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Abstract The procedure followed in constructing models for gene-
ralized continua is revisited. It is shown that the microforce ba-
lance equations required for the description of generalized continua
are not in fact expressions of the balance of physical quantities, but
consequences of the regularity assumed for the systems of contact
actions. In the proposed approach the law of action and reaction,
which in classical continuum mechanics is a consequence of Euler’s
balance laws, recovers the status of a basic principle held in Newto-
nian mechanics. Some examples of generalized continua taken from
the literature are discussed.

1 Introduction

In a recent revisitation1 of the method of virtual power, one of the conclu-
sions was that the two terms which form the equation of the virtual power,
the external and the internal power, should not be the object of indepen-
dent assumptions. Once an expression of the external power is assumed,
the internal power can be deduced, using some regularity properties of the
system of contact actions plus the indifference of the external power.

In the present paper, the roles of regularity and indifference have been
separated. Body forces and surface tractions are supposed to be measures,

∗My thanks to the anonymous reviewers, whose accurate and keen remarks contributed

to the overall quality of the paper.
1(Del Piero 2009).
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that is, vector-valued set functions additive on disjoint subsets, which we
call µ and Q, respectively. The surface tractions form a system of contact
actions on the interior surfaces of the body, called a Cauchy flux.2 The
regularity assumptions are made on this system, while the indifference of
power provides relations between Q and µ. This is the reason for separating
the roles of regularity and indifference.

An appropriate set of regularity assumptions on Q, which defines what
we call a bounded Cauchy flux, provides the general structure required for a
self-consistent formulation of Continuum Mechanics. The first assumption is
that the restriction of Q to the collection of the subsurfaces of the boundary
of each fixed subbody be an absolutely continuous measure with respect to
the area measure. The second is that the restriction of Q to the collection
of the boundaries of all subbodies be a measure F absolutely continuous
with respect to the volume measure. That is, Q has a surface density s,
and F has a volume density f . Our third, and last, assumption is that
Q is skew-symmetric. Thus, Q is defined on oriented surfaces S, and the
sign of Q(S) changes with the orientation of S. In mechanical terms, this
corresponds to Newton’s law of action and reaction.

The existence of a volume density f for F determines an integral relation,
which we call a pseudobalance equation, between the densities f and s. This
equation allows us to prove the dependence of s on the normal to the surface
element and the linearity of this dependence. This can be done using two
basic tools of continuum mechanics, Noll’s theorem on the dependence of s
on the normal and Cauchy’s tetrahedron theorem. We emphasize that the
existence of the Cauchy stress is not deduced, as usual, from the balance
law of linear momentum, but from regularity assumptions on the system of
contact actions.3

Only at this point, indifference enters the play. It is known that the
balance laws of linear and angular momentum can be deduced from the
indifference of the external power.4 The first balance law has the same form
as the pseudobalance equation, but is of a different nature: as a consequence
of indifference, it is a relation between Q and the body force measure µ, and
not between surface and volume densities of the same Cauchy flux Q. A
comparison of the two equations leads to the identification of the volume
density f of F with the volume density b of the body force. In this way the
equation of virtual power is obtained, and from it a weak formulation of the
equilibrium problem can be deduced.

2(Gurtin & Martins 1976).
3This is indeed the main idea in the paper (Gurtin & Martins 1976).
4(Noll 1963).
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It may look awkward to invent a complicated procedure to end up with
no new conclusions. In fact, the advantages of the new procedure become
evident when it is extended to more general classes of continua. Essentially,
there are two ways to generalize the classical definition of a continuum:

- to relax the regularity assumed for Q and µ, by admitting the presence
of singular measures,

- to consider additional external actions, represented by additional mea-
sures Qα, µα.

Here we consider generalizations of the second type, which are a standard
way to define continua with microstructure. Our basic assumption is that
not only Q, but also all Qα are bounded Cauchy fluxes. As a consequence,
with each Qα is associated a pseudobalance equation relating the surface
density σα to a volume density φα. But, while Q is related to the body
force measure µ by the balance law of linear momentum, no such relation
is assumed to hold between the measures Qα and µα.

In the literature, the role of the pseudobalance equations is played by
microforce balance equations which are either postulated, or deduced from
an assumed expression of the internal power.5 In both cases it is not clear
whether or not these equations are considered as fundamental laws of me-
chanics, like the balance of linear momentum. If this were the case, a
proliferation of postulates would take place, depending on the number and
nature of the additional variables. Moreover, in most cases the new postu-
lates would not be based on sound physical motivations.

This is the point where the pseudobalance equations play a basic role.
They provide a proof of the existence of counterparts of the stress tensor for
the Cauchy fluxes Qα, without introducing extra balance laws. This makes
possible the transformation of the external power into a volume integral,
the internal power. The equality between external and internal power is
the equation of virtual power. Note that this equation is not a relation
between independent powers, as it is classically considered, but only an
identity between equivalent representations of the same power. It turns out
that this identity is all that is needed for the formulation of the equilibrium
problem.

The paper can be divided into three parts. In the first part, Sections 2 to
4, some basic concepts of measure theory and geometric measure theory are

5For the first choice see the book (Capriz 1989), in which a law of balance of micromo-

mentum is systematically used. On the second choice is based the method of virtual

power developed in (Germain 1973b).
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recalled. The reader not interested in technical details may skip this part.6

Continuous bodies are identified with normalized sets of finite perimeter,7

and the external actions are limited to the pair (Q,µ). A proof of Noll’s
theorem appropriate to this context is given in Appendix A. From it, the
pseudobalance equation (4.17) is deduced.

In the second part, Sections 5 and 6, the traditional formulation of con-
tinuum mechanics and some alternative approaches are analyzed and com-
pared with the approach based on bounded Cauchy fluxes. The final part,
Sections 7 to 11, deals with continua with microstructure. For such con-
tinua, general forms of the pseudobalance equations and of the equation of
virtual power are given in Section 7. The particular forms taken for specific
continua depend on the order parameters which define the microstructure,
and on the restrictions due to the indifference of power, which also vary ac-
cording to the nature of the continuum. We say that the order parameters
define the structural properties of a continuum, not to be confused with the
constitutive properties, which characterize specific classes of materials, and
which are not considered in this paper.

The structural properties and the indifference requirements determine
a subdivision into classes of continua, some of which are discussed in the
final Sections. Continua in which all measures Qα and µα are indifferent
to changes of observer are considered in Section 8, and micropolar continua
and Cosserat continua are considered in Section 9. Section 10 deals with
second-gradient continua. It includes some comments on the edge forces
which show up when the contact forces are decomposed into a normal and
a tangential part, as required for a correct formulation of the boundary
conditions. Finally, Section 11 deals with continua with latent microstruc-
ture, characterized by the presence of internal constraints relating the order
parameters to the macroscopic deformation.

2 Basic concepts and definitions

Let Ω be a bounded set in the N -dimensional Euclidean point space EN ,
and let ℘(Ω) be a collection of subsets of Ω, including Ω and the empty set
∅. We say that two elements Π1,Π2 of ℘(Ω) are disjoint if

Π ∈ ℘(Ω) , Π ⊂ Π1 , Π ⊂ Π2 ⇒ Π = ∅ .

6For the reader who is interested in such details, a more general intro-

duction can be found in (Vol’pert & Hudjaev 1985). Basic reference books

are (Evans & Gariepy 1992) and (Ambrosio et al. 2000) for measure theory, and

(Federer 1969) and (Ziemer 1989) for geometric measure theory.
7(Šilhavý 1991).
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Assume that ℘(Ω) is equipped with a binary operation ∨, which with every
pair (Π1,Π2) of elements of ℘(Ω) associates a set (Π1∨ Π2) ∈ ℘(Ω), called
the join of Π1 and Π2, such that

Π1 ⊂ Π1∨Π2 , Π2 ⊂ Π1∨Π2 ,

Π1 ⊂ Π and Π2 ⊂ Π ⇒ Π1∨Π2 ⊂ Π .
(2.1)

Assume, further, that with each Π ∈ ℘(Ω) is associated a set Πc ∈ ℘(Ω),
called the complement of Π in Ω, such that

Π and Πc are disjoint , Π ∨Πc = Ω . (2.2)

The join and the complement are unique.8 They define a second binary
operation

Π1∧Π2 = (Πc
1 ∨Πc

2)c, (2.3)

called the meet of Π1 and Π2. Two sets in ℘(Ω) are disjoint if and only if
their meet is the empty set.9

The existence of the join and of the complement provides ℘(Ω) with the
structure of an algebra of sets. In particular, this structure includes the
properties

associative Π ∨ (Π1 ∨Π2) = (Π ∨Π1) ∨Π2 ,

distributive Π ∨ (Π1 ∧Π2) = (Π ∨Π1) ∧ (Π ∨Π2) ,

plus the properties obtained by interchanging ∨ and ∧ in the above relations.
The set ℘(Ω) of all countable joins and complements of elements of ℘(Ω) is
the σ-algebra generated by ℘(Ω).

Let Y be a finite-dimensional inner-product space.10 A Y – valued mea-
sure on ℘(Ω) is a map µ : ℘(Ω)→ Y , additive on disjoint sets:

Π1,Π2 ∈ ℘(Ω) , Π1 ∧Π2 = ∅ ⇒ µ(Π1 ∨Π2) = µ(Π1) + µ(Π2) .

Examples of real-valued measures are the N -dimensional Lebesgue measure
LN and the (N −1)-dimensional Hausdorff measure HN−1. For them, ℘(Ω)
is the set of all Lebesgue measurable subsets and of all subsets of EN ,
respectively. For both, Y is the real line, the join and the meet are the union

8A proof of this statement and of other statements made in this Section can be found

in (Del Piero 2003), Sect. 5.
9The join and the meet are also called the least envelope and the greatest common part

of Π1 and Π2, respectively ((Noll 1973), Sect. 8, (Truesdell 1991), Sect. 1.2).
10For example, the real line R, or the set RN of all vectors of dimension N , or the set

RN×N of all linear transformations on RN (N×N matrices, or second-order tensors).
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and the intersection of sets, and the complement of Π is the complementary
set Ω \Π. For N = 3, the two measures are called the volume measure and
the area measure, respectively. For convenience we keep these names, and
use the notations V,A in place of LN ,HN−1, for every N .

A measure µ : ℘(Ω) → Y is absolutely continuous with respect to the
volume measure (to the area measure) if µ(Π) = 0 for all Π ∈ ℘(Ω) for
which V (Π) = 0 (for which A(Π) = 0). A measure µ is said to be singular
with respect to the same measures if there is a Π1 ∈ ℘(Ω) with V (Π1) = 0
(with A(Π1) = 0) such that µ(Π2) = 0 for all Π2 ∈ ℘(Ω) disjoint from Π1.
By the Lebesgue decomposition theorem, every measure µ admits a unique
decomposition

µ = µa + µs ,

with µa absolutely continuous and µs singular with respect to the volume
measure (to the area measure).

Let Π be a subset of EN , and let Br(x) be the N -dimensional ball with
radius r centered at x ∈ EN . The limit

ρ(Π, x) = lim
r→0

V (Br(x) ∧Π)
V (Br(x))

, (2.4)

if it exists, is a real number between 0 and 1. Then x is said to be a
point of density for Π if ρ(Π, x) = 1, a point of rarefaction if ρ(Π, x) = 0,
and a point of the essential boundary otherwise. The set of all density
points, the set of all rarefaction points, and the essential boundary are also
called the measure-theoretic interior, exterior, and boundary of Π. They will
be denoted by Π∗, ext∗Π, ∂∗Π, respectively. For the topological interior,
exterior, and boundary of Π, the inclusions

int Π ⊂ Π∗ , ext Π ⊂ ext∗Π , ∂Π ⊃ ∂∗Π , (2.5)

hold. It is also of interest that

Π∗ = (Π∗)∗ , ext∗Π = ext∗ (Π∗) , ∂∗Π = ∂∗(Π∗) . (2.6)

Let H(x, n) be the half-space through x with exterior unit normal n. Set:

ρ(Π, x, n) = lim
r→0

V (Br(x) ∧Π ∧H(x, n))
V (Br(x))

.

We say that a unit vector n is the measure-theoretic exterior normal, in
short, the exterior normal, to Π at x if

ρ(Π, x, n) = 1
2 , ρ(Π, x,−n) = 0 .
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The exterior normal, if it exists, is unique. At all points x at which the
exterior normal exists, one has

ρ(Π, x) = ρ(Π, x, n) + ρ(Π, x,−n) = 1
2 .

Therefore, all such points belong to the essential boundary of Π.
The perimeter of a set is the area of the essential boundary. For all sets

of finite perimeter, the following properties hold:

(i) the finite unions and intersections and the complementary sets of sets
of finite perimeter are sets of finite perimeter,

(ii) on the essential boundary of a set of finite perimeter the exterior nor-
mal exists A-almost everywhere,11

(iii) for a set Π of finite perimeter, Π and Π∗ differ by a set of zero volume,
(iv) for a set Π of finite perimeter, the divergence theorem∫

∂∗Π

ϕ(x) · n(x) dA =
∫

Π

divϕ(x) dV (2.7)

holds for all Lipschitz continuous functions ϕ : RN→ RN .12

Note that, for
ϕ(x) = TT(x) v(x) ,

with T and v sufficiently regular tensor and vector fields, respectively, equa-
tion (2.7) provides the Gauss-Green formula∫

∂∗Π

T (x)n(x) · v(x) dA =
∫

Π

(
T (x) · ∇v(x) + divT (x) · v(x)

)
dV . (2.8)

A set Π is normalized if Π = Π∗. For normalized sets, it can be proved that
the the rules (2.1), (2.2), and (2.3) are satisfied if and only if

Π1 ∨Π2 = (Π1 ∪Π2)∗ , Πc = (Ω \Π)∗ , Π1 ∧Π2 = Π1 ∩Π2 . (2.9)

That is, the join is the normalized union, the complement is the norma-
lized complementary set, and the meet is the normalized intersection, which
coincides with the intersection. Moreover, for normalized sets,

Πc = ext∗ Π , ext∗ (Πc) = Π , ∂∗(Πc) = ∂∗Π . (2.10)

11That is, except at most at a set of null area. See (Vol’pert & Hudjaev 1985), Section

4.5.3. In general, topological boundary and measure-theoretic boundary are not area-

equivalent, see (Noll & Virga 1988) and ((Del Piero 2003), Section 3).
12(De Giorgi 1954; Federer 1958; Evans & Gariepy 1992). The regularity assumption on

ϕ has been progressively relaxed, see footnote 26 below.
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Let Ω be a normalized set of finite perimeter, and let ℘(Ω) be the set of
all normalized subsets of Ω of finite perimeter. Because the join, the meet,
and the complement of normalized sets are normalized sets, and the join,
the meet, and the complement of sets of finite perimeter are sets of finite
perimeter, ℘(Ω) is an algebra of sets. Its elements will be called the subbodies
of Ω. Then, ℘(Ω) is the σ-algebra generated by the subbodies of Ω.

3 Surfaces, oriented surfaces, surface measures

The surface of a subbody Π is the essential boundary ∂∗Π. The subsurfaces
of ∂∗Π are the intersections of a surface with other subbodies

S1 = ∂∗Π ∩Π1 , Π1 ∈ ℘(Ω) .

The relations

∂∗Π1 ∩Π2 = ∂∗(Π1 ∩Π2) ∩Π2 = ∂∗(Π1 ∨Πc
2) ∩Π2 (3.1)

hold for every pair of subbodies, and the relation

∂∗Π1 ∩ (Π1 ∨Π2) = ∂∗Π2 ∩ (Π1 ∨Π2) (3.2)

holds for every pair of disjoint subbodies. The proofs are left to the reader.
The subsurface (3.2) is the separating surface of Π1 and Π2.

Let S be a subsurface of ∂∗Π. At a point x of S, consider the limit

ρ(S, x) = lim
r→0

A(S ∩Br(x))
Ar

,

where Ar is the area of the largest circle in Br(x). For S = ∂∗Π, this limit
is equal to one for A-almost every x ∈ ∂∗Π.13 Then for S ⊂ ∂∗Π the same
limit is a number between zero and one. We say that x is a density point
for S if ρ(S, x)=1. The set of all density points of S will be denoted by S?.

A subsurface S is normalized if S = S?. The surfaces S and S? differ at
most by a set of area zero. If Π and Π1 are normalized sets, the subsurface
S1 = ∂∗Π ∩ Π1 need not be normalized. An example is given in Fig. 1a,
where the point H does not belong to Π1 and, therefore, to S1, but belongs
to S?1 .

In a natural way, the subsurfaces of ∂∗Π inherit the algebraic structure
of ℘(Ω). For the normalized subsurfaces

S1 = (∂∗Π ∩Π1)? , S2 = (∂∗Π ∩Π2)? , (3.3)

13(Ziemer 1983), Sect. 2.
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Figure 1. Two-dimensional examples of: a non-normalized subsurface
∂∗Π ∩ Π1 (a), two normalized subsurfaces ∂∗Π ∩ Π1, ∂

∗Π ∩ Π2 for which
∂∗Π ∩ (Π1 ∨ Π2) is a normalized subsurface, (b), and is a non-normalized
subsurface, (c), and a normalized subsurface ∂∗Π ∩Π1 for which ∂∗Π ∩Πc

1

is a non-normalized surface (d)

the join, complement, and meet are defined by

S1 g S2 = (∂∗Π ∩ (Π1 ∨Π2))? , SΠ
1 = (∂∗Π ∩Πc

1)? ,

S1 f S2 = (∂∗Π ∩Π1 ∩Π2)? ,
(3.4)

respectively. We say that S1 and S2 are disjoint if S1 f S2 = ∅.
If Π, Π1, Π2 are normalized, the surfaces (∂∗Π∩ (Π1∨Π2)), (∂∗Π∩Πc

1),
(∂∗Π∩Π1 ∩Π2) need not be normalized. For example, in both Fig. 1b and
1c the point H is a density point for (∂∗Π ∩ (Π1 ∨ Π2)). But in the first
case it belongs to Π1 ∨Π2 and in the second it does not. In Fig. 1d, H is a
density point for (∂∗Π ∩ Πc

1) but does not belong to Πc
1. Finally, for Π,Π1

as in Fig. 1a and Π2 = Ω, (∂∗Π ∩ Π1 ∩ Π2) reduces to ∂∗Π ∩ Π1, which is
not a normalized subsurface. This proves that the meet of subsurfaces does
not coincide with the intersection.

Of fundamental importance are the following properties of the partition
of a subbody Π into disjoint subbodies Π1,Π2, by means of a separating
surface S.

Proposition 3.1. Let Π,Π1,Π2 be subbodies such that

Π = Π1 ∨Π2 , Π1 ∩Π2 = ∅ , (3.5)

let S be the normalized separating surface S = (∂∗Π1 ∩Π)?, and let

S1 = (∂∗Π1 ∩Πc
2)? , S2 = (∂∗Π2 ∩Πc

1)? . (3.6)

Then S, S1, S2 are pairwise disjoint, and

S1 g S2 = ∂∗(Π1 ∨Π2) , S g S1 = ∂∗Π1 , S g S2 = ∂∗Π2 . (3.7)
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Proof. By (3.1),

S1 = (∂∗Π1 ∩Πc
2)? = (∂∗Π ∩Πc

2)? , S2 = (∂∗Π2 ∩Πc
1)? = (∂∗Π ∩Πc

1)? .

Then both S1 and S2 are subsurfaces of ∂∗Π. By (3.4) and (2.3),

S1 f S2 = (∂∗Π ∩Πc
1 ∩Πc

2)? = (∂∗Π ∩ (Π1 ∨Π2)c)? = (∂∗Π ∩Πc)? = ∅ ,

S1 g S2 = (∂∗Π ∩ (Πc
1 ∨Πc

2))? = (∂∗Π ∩ (Π1 ∩Π2)c)? = (∂∗Π)? = ∂∗Π ,

with the second to last inequality due to the fact that Π1 ∩Π2 is the empty
set, and therefore its complement is Ω. This proves (3.7)1. Moreover, since
both S and S1 are subsurfaces of ∂∗Π1, by (3.4) and by the distributive
property,

S f S1 = (∂∗Π1 ∩ (Π1 ∨Π2) ∩Πc
2)?

= (∂∗Π1 ∩ ((Π1 ∩Πc
2) ∨ (Π2 ∩Πc

2)))? = (∂∗Π1 ∩Π1 ∩Πc
2)? = ∅ ,

because both Π2 ∩Πc
2 and ∂∗Π1 ∩Π1 are empty. Moreover,

S g S1 = (∂∗Π1 ∩ (Π1 ∨Π2 ∨Πc
2))? = (∂∗Π1)? = ∂∗Π1 ,

with the second equality due to Π2 ∨Πc
2 = Ω. To get S fS2 = ∅ and (3.7)3

note that, by (3.2),

S = (∂∗Π1 ∩Π)? = (∂∗Π2 ∩Π)? ,

that is, both S and S2 are subsurfaces of ∂∗Π2. Then it is sufficient to
repeat the preceding proof, with the subscripts 1 and 2 interchanged.

Another remarkable consequence of the relations (3.1) is the following de-
composition of the essential boundary of an intersection.14

Proposition 3.2. For every pair Π1,Π2 in ℘(Ω),

∂∗(Π1 ∩Π2) = (∂∗Π1 ∩Π2)? g (∂∗Π2 ∩Π1)? . (3.8)

Proof. By (3.1)1,

∂∗Π1 ∩Π2 = ∂∗(Π1 ∩Π2) ∩Π2 , ∂∗Π2 ∩Π1 = ∂∗(Π1 ∩Π2) ∩Π1 .

14This Proposition generalizes a relation proved in (Ziemer 1983) for non-normalized

surfaces, for which (3.8) holds only to within sets of null area.
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Then, by (3.3) and (3.4)1 with Π = Π1 ∩Π2,

(∂∗Π1 ∩Π2)? g (∂∗Π2 ∩Π1)? = (∂∗(Π1 ∩Π2) ∩ (Π2 ∨Π1))?. (3.9)

On the other hand, by (3.3) and (3.4)2 with Π = Π1 ∩Π2 and with Π1 ∨Π2

in place of Π1,

((∂∗(Π1 ∩Π2) ∩ (Π1 ∨Π2))?)Π = (∂∗(Π1 ∩Π2) ∩ (Π1 ∨Π2)c)?.

The right-hand side is the empty set, because

∂∗(Π1 ∩Π2) ⊂ ∂∗Π1 ∪ ∂∗Π2 , (Π1 ∨Π2)c = Πc
1 ∩Πc

2 ,

and both ∂∗Π1 ∩ Πc
1 and ∂∗Π2 ∩ Πc

2 are empty. If the complement of a
subsurface of ∂∗(Π1∩Π2) is empty, the subsurface coincides with the whole
surface:

(∂∗(Π1 ∩Π2) ∩ (Π1 ∨Π2))? = ∂∗(Π1 ∩Π2) .

Then combining with (3.9) the desired relation (3.8) follows.

The surface ∂∗Π has a natural orientation, with the interior on the side of
Π and the exterior on the side of Πc. By (2.10)3, ∂∗Π can also be viewed as
the surface of Πc, and in this case it has the opposite orientation. The same
holds for the subsurfaces S1 = (∂∗Π∩Π1)?. For a given orientation of ∂∗Π,
with the symbol S

⇀

we denote the subsurface S with the same orientation,
and with S

↼

we denote the same subsurface with the opposite orientation.
By S⇀(Π) we denote the set of all countable joins and complements of

normalized subsurfaces of ∂∗Π, oriented as ∂∗Π. This set is the σ-algebra
generated by the subsurfaces of ∂∗Π. A Y -valued surface measure on ∂∗Π
is a function Q : S⇀(Π)→ Y , additive on disjoint surfaces:

Q(S1 g S2) = Q(S1) +Q(S2) , S1, S2 ∈ S
⇀

(Π) , S1 f S2 = ∅ . (3.10)

4 Cauchy fluxes and pseudobalance equations

Let S (Ω) be the set of all oriented surfaces in Ω:

S (Ω) =
⋃

Π∈℘(Ω)

{
S
⇀

: S
⇀

∈ S
⇀

(Π)
}
.

A Y -valued Cauchy flux on Ω is a function Q : S (Ω)→ Y , whose restriction
to each S⇀(Π) is a surface measure on ∂∗Π. A Cauchy flux is symmetric if

Q(S
⇀

) = Q(S
↼

) ∀S
⇀

∈ S (Ω) ,
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and is skew-symmetric if

Q(S
⇀

) = −Q(S
↼

) ∀S
⇀

∈ S (Ω) .

An example of a real-valued symmetric Cauchy flux is the area measure. In
the rest of the paper, we will be interested in skew-symmetric Cauchy fluxes.
For them, the following additivity property for non-disjoint surfaces holds.15

Proposition 4.1. For a Cauchy flux Q, the equation

Q(∂∗(Π1 ∨Π2)) = Q(∂∗Π1) +Q(∂∗Π2) (4.1)

holds for all pairs Π1,Π2 of disjoint subbodies, if and only if Q is skew-
symmetric.

Proof. Let S
⇀

be the subsurface (∂∗Π1 ∩ (Π1 ∨Π2))? oriented as ∂∗Π1, and
let S

⇀

1, S
⇀

2 be the subsurfaces (3.6) oriented as ∂∗Π1 and ∂∗Π2, respectively.
By Proposition 3.1 the three surfaces are pairwise disjoint, and equations
(3.7), now rewritten as

S
⇀

1 g S
⇀

2 = ∂∗(Π1 ∨Π2) , S
⇀

g S
⇀

1 = ∂∗Π1 , S
↼

g S
⇀

2 = ∂∗Π2 ,

hold. By the additivity property (3.10) on disjoint surfaces,

Q(∂∗(Π1 ∨Π2)) = Q(S
⇀

1) +Q(S
⇀

2) ,

Q(∂∗Π1) = Q(S
⇀

) +Q(S
⇀

1) , Q(∂∗Π2) = Q(S
↼

) +Q(S
⇀

2) .

Then (4.1) holds if and only if Q(S
⇀

) = −Q(S
↼

).

Let Q be a Cauchy flux, and let F : ℘(Ω)→ Y be the function

F (Π) .= −Q(∂∗Π) . (4.2)

We are interested in whether or not F is a measure. The question is an-
swered by the following

Proposition 4.2. Let Q : S (Ω) → Y be a Cauchy flux, and let F be
as in (4.2). Then F is a Y -valued measure on ℘(Ω) if and only if Q is
skew-symmetric.

Proof. It is sufficient to prove that F is additive on disjoint subsets:

F (Π1 ∨Π2) = F (Π1) + F (Π2) , Π1,Π2 ∈ ℘(Ω) , Π1 ∩Π2 = ∅ .

15(Noll 1973), Sect. 8.
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By (4.2), this is the same as (4.1). By Proposition 4.1, equation (4.1) holds
if and only if Q is skew-symmetric.

Thus, the restriction of a skew-symmetric Cauchy flux to the surfaces ∂∗Π
of all Π ∈ ℘(Ω) can be identified with a measure F on ℘(Ω). Consider the
Lebesgue decomposition of F into the sum of an absolutely continuous and
a singular part with respect to the volume measure

F = F a + F s.

By the Radon-Nikodým theorem,16 F a has a volume density f ∈ L1(Ω, Y )

F a(Π) =
∫

Π

f(x) dV ∀Π ∈ ℘(Ω) , (4.3)

while F s is concentrated on a subset of Π with zero volume. Moreover, the
Cauchy flux Q admits the decomposition Q = Qa +Qs, with

Qa(S
⇀

) =
∫
S

s(x, ∂∗Π) dA ∀S ∈ S
⇀

(Π) , (4.4)

where s( · , ∂∗Π) ∈ L1(∂∗Π, Y ) is the surface density associated with the
restriction of Qa to S⇀(Π), and Qs is concentrated on a subset of ∂∗Π with
null area measure. Equation (4.2) then takes the form∫

Π

f(x) dV + F s(Π) +
∫
∂∗Π

s(x, ∂∗Π) dA+Qs(∂∗Π) = 0 . (4.5)

The measure Q is absolutely continuous with respect to the area measure if
Qs = 0, and F is absolutely continuous with respect to the volume measure
if F s = 0. A sufficient condition for the A-absolute continuity of Q is the
property of area boundedness

|Q(S
⇀

) | ≤ KA(S
⇀

) , ∀S
⇀

∈ S (Ω) . (4.6)

with K a positive constant and | · | the norm of Y . A sufficient condition
for the V -absolute continuity of F is the volume boundedness

|F (Π) | ≤ K V (Π) ∀Π ∈ ℘(Ω) . (4.7)

The less restrictive condition that for every Π ∈ ℘(Ω) there is a non-negative
function hΠ ∈ L1(∂∗Π,R) such that

|Q(S) | ≤
∫
S
hΠ(x) dA ∀S ∈ S

⇀

(Π) , (4.8)

16See e.g. (Ambrosio et al 2000).
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is sufficient for the A-absolute continuity of Q, and the condition that there
is a non-negative function h ∈ L1(Ω,R) such that

|F (Π) | ≤
∫

Π

h(x) dV ∀Π ∈ ℘(Ω) , (4.9)

is sufficient for the V -absolute continuity of F .17 A flux with the properties
(4.8) and (4.9) is called a weakly balanced Cauchy flux.18

Thus, F is a measure if and only ifQ is skew-symmetric, and this measure
is V -absolutely continuous if and only if Q is weakly balanced. A skew-
symmetric weakly balanced Cauchy flux is called a bounded Cauchy flux.19

For such fluxes, equation (4.2) takes the special form∫
Π

f(x) dV +
∫
∂∗Π

s(x, ∂∗Π) dA = 0 . (4.10)

Equation (4.5) and its special form (4.10) will be called pseudobalance equa-
tions, to distinguish them from the balance equations of continuum mecha-
nics, which have the same form but a different physical meaning.

The pseudobalance equation (4.10) has two important consequences. For
almost every x ∈ Ω,

(i) the surface density

s(x, ∂∗Π) = lim
r→0

Q(∂∗Π ∩Br(x))
A(∂∗Π ∩Br(x))

(4.11)

only depends on the exterior normal n to ∂∗Π at x,

s(x, ∂∗Π) = s(x, n) a.e. x ∈ Ω , (4.12)

(ii) the dependence of s on n is linear.

The first consequence was considered a postulate by Cauchy, and was proved
later by Noll.20 The second is the object of the celebrated tetrahedron
theorem of Cauchy. Formally, they can be stated as follows.

17(Šilhavý 1985).
18(Gurtin & Martins 1976), modified in (Šilhavý 1985).
19(Šilhavý 2008).
20(Noll 1959).
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Theorem 4.3. Let Q be a bounded Cauchy flux, and let Π be a subbody.
Let x be a point of ∂∗Π at which the measure-theoretic exterior normal n
exists, and let s(x, ∂∗Π) be the limit (4.11). Then for every other subbody
Π′ with x ∈ ∂∗Π′ and with the same normal n at x,

s(x, ∂∗Π′) = s(x, ∂∗Π) . (4.13)

Theorem 4.4. Let Q and s be as above, and let the function hP in equation
(4.15) below be integrable. Then there is a mapping T ∈ L1(Ω,RN×N ) such
that

s(x, n) = T (x)n (4.14)

for all n ∈ Y and for V -almost all x in Ω.

The proof of Theorem 4.3 given in Appendix A follows the lines of Noll’s
original proof,21 with modifications dictated by the weaker regularity as-
sumed for the surfaces ∂∗Π. For Theorem 4.4, the original proof based
on the tetrahedron argument22 is sufficient for the purpose of the present
paper. It is known23 that Cauchy’s proof relies on the somehow artificial
assumption of continuity of the vector field s( · , n). Later, the theorem was
extended to integrable functions.24

A sufficient condition for integrability is the following. For every fixed
direction n, let Pnξ be the plane with normal n and with signed distance
ξ from a fixed point x0. For an absolutely continuous flux Q, the function
s( · , n) is integrable on each Pnξ . Then, there is a non-negative number hP ,
depending on ξ, such that∫

Pnξ ∩Ω

|s(x, n)| dA ≤ hP (ξ)A(Pnξ ∩ Ω) . (4.15)

Assume that the function ξ 7→ hP (ξ) is integrable over the real line. If Ω is
bounded, this guarantees the integrability of s( · , n) over Ω.25

For a bounded Cauchy flux, using (4.14) and the tensorial version of the
divergence theorem (2.7)∫

∂∗Π

T (x)ndA =
∫

Π

divT (x) dV, (4.16)

21(Noll 1959).
22(Cauchy 1823). For proofs not based on the tetrahedron argument see (Šilhavý 1985;

1990; 1991; 2008), (Fosdick & Virga 1989), (Marzocchi & Musesti 2003).
23(Noll 1973), Sect. 8.
24(Gurtin et al. 1968).
25(Kolmogorov & Fomin 1970), Sect. 35, Problem 6.
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which follows from (2.8) written for a constant v, the pseudobalance equa-
tion (4.10) takes the form of a volume integral∫

Π

(f(x) + divT (x)) dV = 0 . (4.17)

By the arbitrariness of Π, this implies the local relation

f(x) + divT (x) = 0 a.e. x ∈ Ω , (4.18)

between the divergence of T and the volume density of the measure F .26

5 The traditional approach to continuum mechanics

In this Section we recall the traditional formulation of continuum mechanics.
Some alternative formulations present in the literature are summarized in
the next Section.

Let Ω be the region of EN occupied by a continuous body. The interac-
tion of a body with the exterior is assumed to consist of two vector-valued
measures, a volumic measure µ : ℘(Ω) → RN called the distance action,
and a surface measure Q : S⇀(Ω) → RN , called the contact action.27 They
are subject to two fundamental axioms, the Euler laws of motion and the
cut principle of Euler and Cauchy.28

The Euler laws are the balance laws of linear momentum and of angular
momentum. They state that the total action and the total moment exerted
on Ω by the exterior are zero29∫

Ω

dµ+
∫
∂∗Ω

dQ = 0 ,
∫

Ω

x× dµ+
∫
∂∗Ω

x× dQ = 0 . (5.1)

The cut principle states that the same balance laws hold for every subbody
Π of Ω. This hypothesis requires, in particular, that the contact action be
defined on all surfaces ∂∗Π and not only on the boundary ∂∗Ω, and that

26Because f is integrable by assumption, not only T , but also its divergence is inte-

grable. The regularity of T has been successively relaxed to Lp with divergence in Lp

(Ziemer 1983; Šilhavý 1985), to L∞ with divergence measure (Chen & Torres 2005), to

L1 with divergence measure (Degiovanni et al. 1999), and to measures with divergence

measure (Chen & Frid 1999).
27Inertia forces are included in µ, see (Noll 1963), Sect. 7.
28(Truesdell 1991), Sect. III.1.
29Here and in the following, with the same symbol x we denote both a point in EN and

the position vector x−o with respect to an origin o chosen once and for all.
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(5.1) holds with Ω replaced by Π. In other words, the cut principle requires
that Q be a Cauchy flux.

The measures µ and Q are supposed to have a volume density b and an
area density s( · , ∂∗Π), respectively. Then the balance laws take the form∫

Ω

b(x) dV +
∫
∂∗Ω

s(x, ∂∗Ω) dA = 0 ,∫
Ω

x× b(x) dV +
∫
∂∗Ω

x× s(x, ∂∗Ω) dA = 0 .
(5.2)

By the cut principle, the same laws hold for every subbody Π.30 Then,
using the arbitrariness of Π, from the first balance law the dependence of
s(x, · ) on the normal, the action-reaction law

s(x, n) = −s(x,−n) , (5.3)

and the existence of a stress tensor T such that

s(x, n) = T (x)n , (5.4)

are deduced using Theorems 4.3 and 4.4 with f replaced by b.31 As a
consequence, the balance equations (5.2) are reduced to the local forms

divT (x) + b(x) = 0 , T (x) = TT (x) a.e. x ∈ Ω . (5.5)

These are the local equations of motion, or, in the absence of inertia forces,
the local equilibrium equations at the internal points of Ω. After introducing
a set V of virtual displacements v, equation (5.5)1 multiplied by v and
integrated over Π, the Gauss-Green formula (2.8), the relation (5.4), and
the symmetry condition (5.5)2 lead to the equation of virtual power∫
Π

b(x)·v(x) dV+
∫
∂∗Π

s(x, n)·v(x) dA =
∫

Π

T (x)·∇Sv(x) dV. ∀v ∈ V. (5.6)

This equation states the equality of the external power of the actions b, s
with the internal power, given by the product of the internal force T by

30In fact, writing equation (5.2) with Ω replaced by Π requires some physical assumptions.

Namely, using the same volume density b for Ω and for Π requires the assumption that

the distance actions between parts of the body are negligible. Also, treating the contact

actions at the interior surfaces of the body in the same way as the contact actions at

the boundary means to exclude any special structure of the body’s surface, such as, for

example, the structure of the material surfaces studied in (Gurtin & Murdoch 1975).
31For the deduction of (5.3) see (Noll 1959).
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the generalized deformation ∇Sv. This equation has been deduced from
the equilibrium equations (5.5). Conversely, if (5.6) is assumed to hold,
equations (5.5) follow after replacing s(x, n) by T (x)n. Thus, equation
(5.6) is an alternative definition of equilibrium. It can be regarded as the
weak form of the definition of an equilibrated system of actions.

Assume that the external body forces b be known, that surface tractions
s(x) be prescribed on a portion ∂∗sΩ of ∂∗Ω, and that null displacements be
prescribed on the complement (∂∗sΩ)c of ∂∗sΩ . Denoting by Vo the set of all
virtual displacements which vanish on (∂∗sΩ)c, from equation (5.6) written
for Π = Ω it follows that∫
Ω

b(x) ·v(x) dV +
∫
∂∗sΩ

s(x) ·v(x) dA =
∫

Ω

T (x) ·∇Sv(x) dV ∀v ∈ Vo . (5.7)

By introducing the constitutive equation of an elastic material32

T = g(∇u) , (5.8)

the weak form of the equilibrium problem for an elastic body is obtained.33

For non-elastic bodies the formulation is more complicated, since it requires
the introduction of additional variables and of the corresponding genera-
lized forces and evolution equations.34 Non-elastic continua will not be
considered in this paper.

6 Alternative approaches

The traditional approach to continuum mechanics illustrated in the pre-
vious Section grew over the centuries, starting from the pioneering work
of Newton, Euler, and Cauchy. Relatively recent is the realization that
the balance laws (5.2) are consequences of a more fundamental physical
principle, the indifference, that is, the invariance under changes of observer,
of the external power.35 For the external power given by the left side of

32Here and in the following, the constitutive equations are relative to the current de-

formed configuration of the body, taken as the reference configuration. This is the

reason why the kinematical variable is the gradient of the virtual displacement.
33See (Ciarlet 1988), Theorem 5.2-1.
34see e.g. (Halphen & Nguyen 1975).
35(Noll 1963). In Lagrangian Mechanics, the deduction of the balance of linear momen-

tum from the translational indifference of the Lagrangian is a well known consequence

of Noether’s theorem on the correspondence between the indifference properties of a

functional and conservation laws, see e.g. (Lanczos 1949), p. 403.
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equation (5.6)

Pext(Π, v) =
∫

Π

b(x) · v(x) dV +
∫
∂∗Π

s(x, n) · v(x) dA , (6.1)

indifference is expressed by the condition

Pext(Π, v) = Pext(Π, v + a+W ( · )) , (6.2)

to be satisfied for all Π ∈ ℘(Ω), for all vectors a and for all skew-symmetric
tensors W .36 By the linear dependence of Pext on v, this condition holds if
and only if

Pext(Π, a) = 0 , Pext(Π,W ( · )) = 0 , (6.3)

for all a and for all W , and from these conditions the balance equations
(5.2) easily follow.

Recently, alternative approaches appeared in the literature. One of them
consists in taking the equation of virtual power (5.6) as a postulate. In this
case, the weak formulation (5.7) of the equilibrium problem follows directly
from (5.6) written for Π = Ω and v ∈ Vo, and the balance equations (5.2)
follow from the same equation written for v = a and v = W ( · ), respectively.
This approach has been largely used to construct models of continua with
microstructure.37 Some of its advantages and drawbacks will be discussed
later.

Very common is also the variational approach , which consists in mini-
mizing an energy functional, whose Euler equation coincides with equation
(5.7). For an elastic continuum, the energy is

E(v) =
∫

Ω

w(∇v(x)) dV −
∫

Ω

b(x) · v(x) dV −
∫
∂Ω

s(x) · v(x) dA , (6.4)

where w is the strain energy density, and T = dw(∇v)/ d∇v is the constitu-
tive equation. Thus, in the variational approach the constitutive equation
enters from the very beginning. Since it is our intention to keep the equili-
brium conditions separate from the constitutive assumptions, the variational
approach will not be considered here.

In the approach based on the properties of bounded Cauchy fluxes intro-
duced in Section 4, the pseudobalance equation (4.10) holds. A comparison
of its local form (4.18) with (5.5)1 leads to the identification

f = b . (6.5)

36Here a is the rigid translation a(x) = a, and W is the skew-symmetric tensor Wx =

w × x associated with the rotation vector w, see Appendix B.
37See (Germain 1983a; 1983b).
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That is, the volume density f of Q coincides with the body force. With this
identification, the procedure leading to the equilibrium problem becomes
identical to the one followed in the traditional approach.

Thus, at a first glance, the difference of the two approaches looks irre-
levant. On the contrary, as pointed out in the Introduction, when the exter-
nal actions involve additional measures µα, Qα, some problems are met in
defining additional microscopic balance equations with the traditional ap-
proach. As shown in the following Section, the assumption that all Qα are
bounded Cauchy fluxes provides a quite general solution to this difficulty.

7 Non-classical continua

A continuum with microstructure is a continuum in which the deformations
act on two length scales of different order of magnitude, macroscopic and
microscopic.38 The macrodeformation is described by the displacement vec-
tor u, and the microdeformation is described by a finite number of order
parameters dα, also called internal variables or state variables, defined on
finite dimensional inner product spaces Y α. Each order parameter describes
a microstructure, and each set of order parameters describes a continuum
with microstructure.

Here the terms non-classical continua and classical continua will be used
to denote continua with and without microstructure, respectively. It is
worth mentioning that a self-contained treatment of classical continua may
be obtained by restricting the arguments that follow to the case where the
order parameters and the internal variables are absent.

Just as the macrodeformation u is associated with a pair (µ,Q) of vector-
valued measures describing the macroscopic external actions, to each dα cor-
responds a pair (µα, Qα) of Y α-valued measures, describing the microscopic
external actions due to the α-th microstructure. We confine our attention
to the case in which all measures µα are absolutely continuous with respect
to the volume measure, and all Qα are absolutely continuous with respect
to the area measure.39 In this case each µα has a volume density, the body

38Historically, the first example of a continuum with microstructure is the continuum with

couple stresses (Cosserat E. & F. 1909). A short history of successive developments

and a broad list of applications can be found in the book (Capriz 1989).
39In general, this assumption is too restrictive. Stress concentrations corresponding

to singular Cauchy fluxes appear even in some classical problems of linear elasticity.

Examples of concentrated contact interactions are discussed in (Podio Guidugli 2004),

and examples of stress fields equilibrated with continuous surface tractions at the

boundary and exhibiting, at the interior, stress concentrations on singular surfaces or
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microforce βα, each Qα has a surface density, the surface microtraction σα,
and the external power has the form

Pext(Π, v, να) =
∫

Π

(b · v + βα · να) dV +
∫
∂∗Π

(s · v + σα · να) dA , (7.1)

where να are virtual variations of the order parameters dα.40

We also assume that Q and all Qα are bounded Cauchy fluxes, and we
extend to continua with microstructure the approach based on bounded
Cauchy fluxes, described in Section 4 for classical continua.

For a bounded Cauchy flux, the pseudobalance equation (4.10) holds for
Q, and for each Qα the pseudobalance equation∫

Π

φα dV +
∫
∂∗Π

σα dA = 0 , (7.2)

holds as well, with φα the volume density associated with the flux Qα. By
Theorems 4.3 and 4.4, the relations

s = T n , σα = Σα n , (7.3)

and the local pseudobalance equations

divT + f = 0 , divΣα + φα = 0 , (7.4)

follow, where each Σα is a linear map on the corresponding Y α.41

It is convenient to decompose the volume densities f, φα into the sums

f = b− z , φα = βα − ζα , (7.5)

where z and ζα measure the deviations of the external body forces b, βα

from the densities f and φα.
Using (7.4), (7.5), and the Gauss-Green formula (2.8), the external power

(7.1) tranforms into the internal power

Pint(Π, v, να) =
∫

Π

(z · v + T · ∇v + ζα · να + Σα · ∇να) dV . (7.6)

lines are given in (Lucchesi et al 2006, 2009). An appropriate environment for the

study of stress concentrations is provided by the stress fields with divergence measure,

see (Degiovanni et al. 1999; Chen & Frid 1999; Chen & Torres 2005; Šilhavý 2008).
40Summation over repeated superscripts α is understood. For simplicity of notation,

from here onwards the argument x is omitted.
41For Y α equal to R, RN , RN×N , the values Σα(x) are vectors, second-order tensors,

and third-order tensors, respectively.
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This is the sum of four terms, each of which is the scalar product of an
internal force by the corresponding generalized deformation. Therefore, the
terms z, ζα in (7.5) are characterized as internal forces, and v and να are
the corresponding generalized deformations.

The difference between the internal power (7.6) and the internal power
(5.6) of a classical continuum is not only the presence of microstructural
terms. Indeed, in (7.6) there is the extra term (z · v), and the genera-
lized deformation ∇Sv is replaced by ∇v. This is due to the indifference
requirements. In all examples to be discussed below, the internal power has
the translational indifference property42

Pint(Π, a, 0) = 0 , (7.7)

which implies

z = 0 , (7.8)

and, therefore, leads to the same identification f = b found for the classical
continuum. On the contrary, the condition of rotational indifference varies
according to the physical nature of the order parameters. Therefore, the
symmetry of T found for a classical continuum is not preserved, in general,
in non-classical continua. These are the reasons for the differences between
(7.6) and (5.6) remarked above.

As a consequence of (7.8), z can be dropped from the list of the internal
forces and, consequently, v can be dropped from the list of the generalized
deformations. With this modification, the equation of virtual power for a
continuum with microstructure takes the form∫

Π

(b · v + βα · να) dV +
∫
∂∗Π

(s · v + σα · να) dA

=
∫

Π

(T · ∇v + ζα · να + Σα · ∇να) dV .
(7.9)

Just as equation (5.6) for the classical continuum, this equation defines an
equilibrated system of actions for the continuum with microstructure.

42Just like equation (3.7) for classical continua, in the present approach the equation of

virtual power is in fact an identity, which holds when all systems of contact actions are

strongly balanced Cauchy fluxes. By consequence, the external power is indifferent if

and only if the internal power is. In the following, we will systematically impose the

indifference of the internal power.
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The constitutive equations are relations between the internal forces and
the generalized deformations

T = T̂ (∇v, να,∇να) ,

ζα= ζ̂α(∇v, να,∇να) ,

Σα= Σ̂α(∇v, να,∇να) .

(7.10)

Substituting into equation (7.9) written for Π = Ω and imposing boundary
conditions either to the kinematical variables u, dα or to the corresponding
contact actions s, σα, a generalization of equation (5.7) is obtained. This
is the weak form of the equilibrium problem for an elastic continuum with
microstructure.

In models based on generalizations of the traditional approach, the pseu-
dobalance equation (7.4)1 is replaced by the balance equation of linear mo-
mentum (5.5)1. Equations identical to (7.4)2, called microforce balance
equations, are either postulated,43 or deduced from the equation of virtual
power, assumed as a basic postulate.44 In both cases, the way these equa-
tions are introduced is not completely satisfactory. In the first case, it is
difficult to attribute to such equations, which are so strongly dependent on
the number and physical nature of the order parameters, the same status
of the balance equation of linear momentum, which is a general law of me-
chanics.45 In the second case, it is not clear how much liberty is allowed in
the choice of the internal power, once the external power has been defined.
The choice cannot be completely arbitrary, because it must be compatible
with the balance laws (5.2). Then there must be a tacit pre-selection of
admissible forms of the internal power, in contrast with the character of a
postulate attributed to the equation of virtual power.

On the contrary, the approach based on bounded Cauchy fluxes provides
the most general form of the internal power compatible with the assumed
external power (7.1), that is, with the chosen order parameters. We say that
this choice determines the structural properties of a continuum. Together
with the indifference requirements, these properties define specific classes
of continua. Within each class, the constitutive equations (7.10) define sub-
classes of materials. In many models present in the literature, the assumed

43See e.g. (Capriz 1989), Sect. 8. It is interesting that the assumption that z is zero while

the ζα need not be zero, made on page 22 of the book, coincide with our conclusions

deduced from the indifference of power.
44This is the method proposed by Germain. Examples of models constructed in this way

are given in (Gurtin 2003), Footnote 1, and in (Del Piero 2012), Chapter 2.
45An alternative is to view the microforce balance equations as constitutive assumptions.

To my knowledge, the nature of these equations has never been clearly specified.
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form of the internal power is a special case of (7.6), resulting from a mix of
structural properties and constitutive assumptions.46

A bounded Cauchy flux is skew-symmetric, and this is the property
from which the pseudobalance equations (4.10) and (7.2) follow. From the
foundational viewpoint, I find this fact very intriguing. Indeed, the balance
equations of linear and angular momentum are expressions of Newton’s first
two laws of motion, and the skew-symmetry ofQ is an expression of the third
law, or law of action and reaction. For classical continua, as seen in Section
5, the third law is a consequence of the first two. Accordingly, in classical
continuum mechanics the third law is not considered as a general principle.47

For continua with microstructure, the third law gives a precise status to
the microforce balance equations, transforming them into pseudobalance
equations. In this respect, the third law recovers the role of a general
principle.

8 Continua with indifferent microstructure

Here and in the following Sections, we assume that the translational indiffe-
rence condition (7.7) holds in general. For the rotational condition, consider
first the case in which all microstructures are indifferent

Pext(Π,W ( · ), 0) = 0 . (8.1)

Because scalars are invariant under changes of observer, this is the case
of all microstructures whose order parameters are scalars. Examples are
given by the scalar theories of damage, strain-gradient plasticity, and crystal
plasticity.48

The result of this condition applied to the internal power (7.6) is the sym-
metry of T . In this way condition (5.5)2, which in the traditional approach
was a consequence of the balance of angular momentum, is recovered. There
are no restrictions on the virtual velocities ζα and Σα. In the constitutive
equations (7.10), the only change is that now the values of the constitutive
function T̂ are symmetric second-order tensors.

46In this respect, it is instructive to compare the two models for strain-gradient plasticity

of (Gurtin 2003) and (Gurtin 2004), see (Del Piero 2012), Section 2.4.
47See e.g. (Truesdell 1991), Sect. 12.
48See e.g. (Del Piero 2012), Sect. 2.2.
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9 Micropolar continua

Micropolar continua are continua with microstructure whose order para-
meters dα are vector fields, called directors. They may represent, for
example, the orientations of a crystalline lattice or the directions of some
crystal defects. Since the directors change their orientation with the body’s
deformation, the rotational indifference requires the invariance of the in-
ternal power under simultaneous rigid rotations of the body and of the
directors

Pint(Π, W ( · ), Wdα( · )) = 0 . (9.1)

From (7.6) with z = 0 it follows that

0 =
∫

Π

(
T ·W+ ζα ·Wdα + Σα ·W∇dα

)
dV

= W ·
∫

Π

(
T+ ζα⊗ dα+ Σα∇Tdα

)
dV ,

(9.2)

where ∇Tdα is the transpose of ∇dα. This implies the symmetry of the
integrand function. Then T is not symmetric in general, and its skew-
symmetric part is

TW = −
(
Σα∇Tdα+ ζα⊗ dα

)
W . (9.3)

We say that TW is the reactive part of the internal force T , and that the
symmetric part TS is the active part. While TW is a known function of the
microstructural internal forces ζα and Σα, TS has to be determined by a
constitutive equation. The internal power takes the form∫

Π

(
TS·∇v + ζα · να − (Σα∇Tdα+ ζα⊗ dα)W · ∇v + Σα · ∇να

)
dV

=
∫

Π

(
TS · ∇Sv + ζα · (να−∇Wv dα) + Σα · (∇να−∇Wv∇dα)

)
dV.

(9.4)

It shows that the generalized deformations corresponding to the internal
forces TS , ζα,Σα are

∇Sv , ψα = να−∇Wv dα, Ψα = ∇να−∇Wv ∇dα, (9.5)

respectively. Note that ψα is the relative rotation between the director dα

and the corresponding direction in the deformed body. Thus, the equation
of virtual power becomes∫

Π

(b · v + βα · να) dV +
∫
∂∗Π

(s · v + σα · να) dA

=
∫

Π

(TS · ∇Sv + ζα · ψα + Σα ·Ψα) dV ,
(9.6)
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and the constitutive equations (7.10) take the form

TS = T̂S(∇Sv, ψα,Ψα) ,

ζα = ζ̂α(∇Sv, ψα,Ψα) ,

Σα= Σ̂α(∇Sv, ψα,Ψα) .

(9.7)

Equation (9.6) defines an equilibrated system of actions for a micropolar
continuum. When coupled with the constitutive equations (9.7), it provides
the weak form for the equilibrium problem for a micropolar continuum.

Special micropolar continua are the Cosserat continua. In a three-
dimensional body, they are characterized by three mutually orthogonal di-
rectors dα, whose virtual velocities are

να = ω × dα, (9.8)

with ω a vector field. With this assumption the directors preserve length
and mutual orthogonality in all infinitesimal deformations, and ω measures
their common rotation. In the expression (7.1) of the external power, we
have

βα · να = βα · ω × dα = dα× βα · ω , (9.9)

and, similarly,
σα · να = dα× σα · ω . (9.10)

By setting
c = dα× βα , m = dα× σα , (9.11)

(with α summed), the external power takes the form

Pext(Π, v, ω) =
∫

Π

(b · v + c · ω) dV +
∫
∂∗Π

(s · v +m · ω) dA . (9.12)

Here c and m are the body couple and the surface couple, respectively. Thus,
due to assumption (9.8), the Cosserat continuum is a micropolar continuum
with a single vectorial microstructure.

If all σα are the densities of bounded Cauchy fluxes, by the definition of
the cross product of a vector and a tensor given in Appendix B, from (7.3)
we get

m = dα× σα = dα×(Σαn) = (dα×Σα)n = Mn , (9.13)

where M = dα×Σα is the couple stress. Then using the Gauss-Green formula
and setting

ζ = c+ divM . (9.14)

26



the external power transforms into the internal power

Pint(Π, v, ω) =
∫

Π

(
T · ∇v + ζ · ω +M · ∇ω

)
dV . (9.15)

The rotational indifference condition (9.1) now requires that

Pint(Π, a× ( · ), a) = 0 , (9.16)

for all constant vectors a. The identity a × x = (a × I)x and the relation
(B.7) in Appendix B imply

T (x) · ∇(a× x) = T (x) · (a× I) = 2 t(x) · a , (9.17)

with t the vector associated with the skew-symmetric part of T . Then, by
(9.15) and (9.16),

2 t+ ζ = 0 . (9.18)

This determines the skew-symmetric part of T in the case of Cosserat con-
tinua.

In the macroscopic deformation, the infinitesimal rotation is represented
by the vector associated with the skew-symmetric part of ∇v. By (B.8),
this vector is one half of curl v. Then, again from (B.7),

T · ∇v + ζ · ω = TS · ∇Sv + 2 t · 1
2 curl v + ζ · ω

= TS · ∇Sv + ζ · (ω − 1
2 curl v) .

(9.19)

Then the internal power further reduces to

Pint(Π, v, ω) =
∫

Π

(
TS ·∇Sv + ζ · (ω − 1

2 curl v) +M · ∇ω
)
dV , (9.20)

and the constitutive equations (9.7) take the form

TS= T̂S(∇Sv, ω − 1
2 curl v,∇ω) ,

ζ = ζ̂ (∇Sv, ω − 1
2 curl v,∇ω) ,

M= M̂(∇Sv, ω − 1
2 curl v,∇ω) .

(9.21)

Comparison with the constitutive equations (9.7) shows that the relative
rotation (ω− 1

2 curl v) corresponds to the relative rotation ψα of the general
micropolar continuum.

Again, the equation of virtual power obtained by equating the powers
(9.12) and (9.20) defines an equilibrated system of actions for a Cosserat
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continuum, and this same equation coupled with the constitutive equations
(9.21) provides the corresponding weak form of the equilibrium problem.

10 Second-gradient continua

A second-gradient continuum is a continuum with microstructure whose
unique order parameter is the displacement gradient ∇u.49 The correspon-
ding virtual velocity is ∇v, and the external power has the form

Pext(Π, v) =
∫

Π

(b · v +B · ∇v) dV +
∫
∂∗Π

(s · v + S · ∇v) dA . (10.1)

If the second-order tensor field S is the surface density of a bounded Cauchy
flux, the tensorial version50 of Theorems 4.3 and 4.4 ensures the existence
of a third-order tensor field T such that

S = Tn , divT + Φ = 0 ,
Sij = Tijknk , Tijk,k + Φij = 0 ,

(10.2)

where Φ is the volume density associated with the Cauchy flux. The internal
power, given by the right-hand side of (7.9), now has the form

Pint(Π, v) =
∫

Π

(
(T + Z) · ∇v + T · ∇∇v

)
dV, (10.3)

where Z = B − Φ is the gap between the external body microforce B and
Φ. The rotational indifference is expressed by condition (6.3)2, which now
implies the symmetry of (T + Z)

(T + Z)W = 0 . (10.4)

Then the generalized deformation associated with the internal force (T +Z)
is ∇Sv instead of ∇v. Moreover, due to the symmetry of ∇∇v with respect
to the last two subscripts, only the part of T symmetric with respect to the
last two subscripts, here denoted by T×S , contributes to the power. There-
fore, for a second-gradient continuum the internal forces are the symmetric
tensors (T +Z) and T×S , and ∇Sv and ∇∇v are the corresponding genera-
lized deformations. For an elastic material, the constitutive equations are

T + Z = F̂ (∇Sv,∇∇v) ,

T×S = T̂ (∇Sv,∇∇v) ,
(10.5)

49(Toupin 1962; Mindlin 1964; Germain 1973a). See also (Forte & Vianello 1988;

Noll & Virga 1990; Dell’Isola & Seppecher 1997; Podio Guidugli & Vianello 2010).
50See e.g. the Appendix of (Del Piero 2009).
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with F̂ symmetric, and with T̂ symmetric with respect to the last two
subscripts.51

The name of second-order continuum is due to presence of ∇∇v among
the generalized deformations. This presence causes some complication in
the formulation of the boundary conditions. Indeed, the displacement gra-
dient at the boundary has a normal and a tangential component, and the
tangential component is determined by the values of v at the boundary.
Then, boundary conditions of place can be prescribed only to v and to the
normal component of ∇v.

The form of the boundary conditions is a part of the strong formula-
tion of the equilibrium problem. For a three-dimensional body Ω, at the
boundary ∂∗Ω take an orthonormal local reference frame ( eα, en), where
eα, α ∈ {1, 2} , are tangent vectors, and en is the exterior normal n. After
decomposing the product S · ∇v into the sum of a normal and a tangential
part, the Gauss-Green formula applied to ∂∗Ω yields∫

∂∗Ω

S · ∇v dA =
∫
∂∗Ω

(Sinvi,n + Siαvi,α) dA

=
∫
∂∗Ω

(Sinvi,n − Siα,αvi) dA =
∫
∂∗Ω

(Sn · ∇nv − divαS · v) dA .
(10.6)

In a similar way, a double application of the Gauss-Green formula provides
a well-known transformation of the second-gradient term52∫

Ω

T · ∇∇v dV =
∫

Ω

T×Sijkvi,jk dV

= −
∫

Ω

T×Sijk,kvi,j dV +
∫
∂∗Ω

T×Sijn vi,j dA

=
∫

Ω

T×Sijk,kjvi dV +
∫
∂∗Ω

(T×Sinnvi,n+ T×Siαknkvi,α)− T×Sink,kvi) dA

=
∫

Ω

T×Sijk,kjvi dV +
∫
∂∗Ω

(
T×Sinnvi,n− (T×Siαn,α+ T×Sink,k) vi

)
dA .

(10.7)

By the symmetry of T×S ,

T×Siαn,α = T×Sinα,α = (divα(T×Sn))i ,

T×Sink,k = T×Sinα,α + T×Sinn,n = (divα(T×Sn))i + (∇n(T×Snn))i .

51In particular, the constitutive equations are independent of ∇Wv. See (Grioli 1960),

eq. 19, and (Toupin 1962), eq. 5.1-5.3.
52(Toupin 1962), (Mindlin 1964).
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Therefore,∫
Ω

T · ∇∇v dV =
∫

Ω

divdivT×S · v dV +
∫
∂∗Ω

T×Snn · ∇nv dA

−
∫
∂∗Ω

(
2 divα(T×Sn) +∇n(T×Snn)

)
· v dA .

(10.8)

After the transformation∫
Ω

B · ∇v dV = −
∫

Ω

divB · v dV +
∫
∂∗Ω

Bn · v dA , (10.9)

and a similar transformation for (T +Z), the equation of virtual power
eventually takes the form∫

Ω

(b−divB) · v dV +
∫
∂∗Ω

(
Sn · ∇nv + (Bn+ s− divαS) · v

)
dA

=
∫

Ω

(
divdivT×S − div(T + Z)

)
· v dV +

∫
∂∗Ω

T×Snn · ∇nv dA

+
∫
∂∗Ω

(
(T + Z)n−2 divα(T×Sn)−∇n(T×Snn)

)
· v dA .

(10.10)

From the arbitrariness of v, the equilibrium equation

div divT×S − div(T + Z) = b− divB , (10.11)

at the interior points, and the conditions

((T×Sn)n− Sn) · ∇nv = 0 ,(
(T+Z)n−2 divα(T×Sn)−∇n((T×Sn)n)−Bn−s+divαS

)
· v = 0 ,

(10.12)

at the boundary, are deduced. The latter provide the desired forms of the
boundary conditions of traction

(T×Sn)n = Sn ,

(T+Z)n−2 divα(T×Sn)−∇n((T×Sn)n) = Bn+s−divαS ,
(10.13)

on the portion of the boundary on which the values of the contact actions
S and s are prescribed.53

53These are the equations in (Mindlin 1964), in the improved version of (Bleustein 1967),

plus the simplification (10.8) due to the symmetry of T×S . An interesting interpreta-

tion of the boundary conditions in terms of ortho-fibers is given in (Froiio et al. 2010).
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The operator (divα), obtained in (10.6) and (10.7) when applying the
Gauss-Green formula to ∂∗Ω, must be interpreted in the distributional sense.
Then, if the boundary ∂∗Ω has an edge line, that is, a line at which the
normal is discontinuous, the terms divαS in (10.6) and divα(T×Sn) in
(10.8) include singularities, called edge forces, represented by forces per
unit length applied to the edge line.54

In (10.6), the power of the hypertractions S is represented as the sum of
the powers of two ordinary tractions, (Sn) and (divαS), and the latter has
singularities at points at which the normal is discontinuous. Some authors
believe that the presence of singularities requires a reformulation of theorems
4.3 and 4.4. This does not seem to be the case, as long as the field S itself is
not singular, that is, as long as the Cauchy flux Qα is absolutely continuous
with respect to the area measure. Indeed, in this case the tensorial versions
of Theorems 4.3 and 4.4 apply. The singularities are only apparent, because
they originate from the representation of the power in a discontinuous local
basis.55

On the contrary, more regular regions and generalized versions of Noll’s
and Cauchy’s theorems become necessary when the external actions involve
singular measures. In spite of some valuable progress,56 the construction
of a comprehensive, self-consistent theory of higher-order continua in the
presence of singular measures is still an open problem.

54Similarly, in a third-gradient continuum, concentrated forces, called wedge forces, ap-

pear at vertices, and higher-order terms appear in higher-gradient continua. See

(Noll & Virga 1988), (Di Carlo & Tatone 2001), (Podio Guidugli & Vianello 2010),

(Dell’Isola et al. 2011). A characterization of the power of a nth-gradient continuum

based on the concept of diffused subbody was proposed in (Degiovanni et al. 2007).
55As stated in (Noll & Virga 1990), “edge interactions should not be confused with ex-

ternal actions concentrated along curves”. The problems caused by writing the power

equation in terms of tangential and normal components have a long history. Perhaps,

they were met for the first time in the theory of the bending of plates. The deter-

mination of the boundary conditions for this problem kept scientists of the calibre of

Poisson, Lagrange, Kirchhoff, and Kelvin, busy for a good part of the 19-th century.

For a history of the problem see (Timoshenko 1953).
56The problem of the regularity of regions was posed in (Noll & Virga 1990).

Sets with curvature measure have been introduced by (Degiovanni et al. 2006).

For extensions of theorems 4.3 and 4.4 in the presence of singular measures

see (Dell’Isola & Seppecher 1997; Marzocchi & Musesti 2003; Degiovanni et al. 2006;

Dell’Isola et al. 2011).
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11 Continua with latent microstructure

A continuum with latent microstructure is a continuum subject to internal
constraints relating the order parameters to the macroscopic deformation.57

By effect of the constraint, the internal forces decompose into the sum of
an active part and of a reactive part. The latter does not appear in the
constitutive equations and in the equilibrium equations.

An example is the second-gradient continuum described in the preceding
Section. It has a single tensorial order parameter, whose virtual velocity Vα
is subject to the constraint

Vα = ∇v . (11.1)

By (10.3), the internal forces are (T + Z) and T, and the active parts are
(T + Z)S and T×S .

A second example is given by the Cauchy-Born hypothesis, by which
the orientations of the directors dα are forced to follow the macroscopic
deformation. That is, their variations να must satisfy the the internal con-
straint58

να = ∇v dα, (11.2)

In this case, the external power (7.1) takes the form

Pext(Π, v) =
∫

Π

(
b · v+ (βα⊗ dα) · ∇v

)
dV +

∫
∂∗Π

(
s · v+ (σα⊗ dα) · ∇v

)
dA ,

(with α summed). This is a special case of (10.1), with

B = βα⊗ dα , S = σα⊗ dα . (11.3)

The internal power is

Pint(Π, v) =
∫

Π

(
(T +Σα∇Tdα+ ζα⊗dα) ·∇v+(Σα⊗dα) ·∇∇v

)
dV, (11.4)

with ζα as in (7.5)2. This is a special case of (10.3), with

Z = Σα∇Tdα + ζα⊗ dα , T = Σα⊗ dα. (11.5)

Thus, a micropolar continuum obeying the Cauchy-Born hypothesis is a
second-gradient continuum with particular forms for B,S, Z, and T.

57(Capriz 1985, 1989).
58If the directors dα form a basis for the underlying space and if dα is the dual basis,

this is a special case of (11.1), with Vα = να ⊗ dα.

32



Another special case is the Cosserat continuum with constrained rota-
tion.59 For this continuum, the virtual velocities να are subject to the
internal constraint

να = ∇Wv dα. (11.6)

By (B.4) and (B.8), this constraint can be put in the equivalent form
να = 1

2 curl v × dα. Comparing with (9.8), we see that the internal con-
straint reduces to

ω = 1
2 curl v . (11.7)

That is, the rotations ω of all directors coincide with the rotation 1
2 curl v

in the macroscopic deformation. The external power (9.12) reduces to

Pext(Π, v) =
∫

Π

(b · v + 1
2 c · curl v) dV +

∫
∂∗Π

(s · v + 1
2 m · curl v) dA , (11.8)

and the internal power (9.20) reduces to

Pint(Π, v) =
∫

Π

(TS · ∇Sv + 1
2 M · ∇curl v) dV . (11.9)

Therefore, the generalized deformations corresponding to the internal forces
TS and M are ∇Sv and 1

2 ∇curl v, respectively. The constitutive equations
(9.21) become

TS= T̂S(∇Sv, 1
2 ∇curl v) ,

M = M̂ (∇Sv, 1
2 ∇curl v) .

(11.10)

This is still a second-order continuum. Indeed, by (B.8),
1
2 M · curl v = 1

2 Mijeihkvk,hj = T · ∇∇v , (11.11)

with T the third-order tensor60

Tkhj = 1
2 Mijeihk . (11.12)

For the internal forces T, ζ, M in (9.15), the active parts are TS , 0,M , and
the reactive parts are TW , ζ, 0, respectively. The latter do not appear in
equations (11.9) and (11.10).

A Appendix. Proof of Theorem 4.3

The proof is divided into four steps.

59(Toupin 1964).
60 Note that T is skew-symmetric with respect to the first two subscripts. Then T has

nine independent components, as many as the couple stress tensor M .
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Step 1. For simplicity, write Br in place of Br(x). Consider the definition
(4.2) for the set Π ∩Br

F (Π ∩Br) +Q(∂∗(Π ∩Br)) = 0 .

By Proposition 3.2, the set ∂∗(Π ∩Br) admits the decomposition (3.8)

∂∗(Π ∩Br) = (Π ∩ ∂∗Br)? g (∂∗Π ∩Br)? .

Then, by the the additivity property (3.10),

Q(∂∗(Π ∩Br)) = Q((Π ∩ ∂∗Br)?) +Q((∂∗Π ∩Br)?) ,

and the pseudobalance equation reduces to

F (Π ∩Br) +Q((Π ∩ ∂∗Br)?) +Q((∂∗Π ∩Br)?) = 0 . (A.1)

Step 2. Let us prove that

lim
r→0

F (Π ∩Br)
A(∂∗Br)

= 0 . (A.2)

By the property (4.9) of the bounded Cauchy fluxes, there is a positive
function h ∈ L1(Ω,R) such that

|F (Π ∩Br))| = |Q(∂∗(Π ∩Br))| ≤
∫

Π∩Br
h(x) dV .

Therefore,

lim
r→0

∣∣∣F (Π ∩Br)
A(∂∗Br)

∣∣∣ ≤ lim
r→0

∫
Π∩Brh(x) dV

V (Π ∩Br)
V (Π ∩Br)
A(∂∗Br)

.

The first term on the right converges to a finite value V-almost everywhere,61

and the second term converges to zero, because the volume of Br goes to
zero faster than the area. Then, (A.2) follows.

Step 3. Let us prove that

lim
r→0

Q((∂∗Br ∩Π)?)
A(∂∗Br)

= lim
r→0

Q((∂∗Br ∩H)?)
A(∂∗Br)

, (A.3)

61By the Lebesgue-Besicovitch differentiation theorem, see e.g. (Evans & Gariepy 1992).
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where H = H(x, n) is the half-space with x as a boundary point and with
exterior normal n. From the identity

Π = (Π ∩H) ∨ (Π ∩Hc)

it follows that

(∂∗Br ∩Π)? = (∂∗Br ∩ (Π ∩H))? g (∂∗Br ∩ (Π ∩Hc))? ,

(∂∗Br ∩H)? = (∂∗Br ∩ (H ∩Π))? g (∂∗Br ∩ (H ∩Πc))? .

Then it is sufficient to prove that

lim
r→0

Q((∂∗Br ∩Π ∩Hc)?)
A(∂∗Br)

= 0 , lim
r→0

Q((∂∗Br ∩H ∩Πc)?)
A(∂∗Br)

= 0 . (A.4)

Since Hc = H(x,−n), from the definition of the measure-theoretic normal
we have

lim
r→0

V (Br ∩Π ∩Hc)
V (Br)

= 0 . (A.5)

On the other hand, by the coarea formula62

V (Br ∩Π ∩Hc) =
∫ r

0

A(∂∗Bη ∩Π ∩Hc) dη ,

that is, the map r 7→ V (Br ∩Π ∩Hc) is differentiable, and

d

dr
V (Br ∩Π ∩Hc) = A(∂∗Br ∩Π ∩Hc) (A.6)

for almost every r.63 Since V (Br) = O(rN ), from (A.5) it follows that
V (Br∩Π∩Hc) = o(rN ), and from (A.6) it follows that A(∂∗Br∩Π∩Hc) =
o(rN−1). Because A(∂∗Br) = O(rN−1), we conclude that

lim
r→0

A(∂∗Br ∩Π ∩Hc)
A(∂∗Br)

= 0 . (A.7)

In the identity

lim
r→0

Q((∂∗Br ∩Π ∩Hc)?)
A(∂∗Br)

= lim
r→0

Q((∂∗Br ∩Π ∩Hc)?)
A((∂∗Br ∩Π ∩Hc)?)

lim
r→0

A((∂∗Br ∩Π ∩Hc)?)
A(∂∗Br)

,

62(Ziemer 1983), Eqn. (8).
63Again by the Lebesgue-Besicovitch theorem. The same holds for the identity next to

(A.7).
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by the absolute continuity of Q, the first limit on the right exists and is
finite for A-almost every x in Ω. The second limit is zero by (A.7), because
a subsurface differs from the corresponding normalized surface at most by
a set of area zero. Then (A.4)1 follows. Equation (A.4)2 is proved in the
same way.

Step 4. From (A.1), (A.2), and (A.3) it follows that

lim
r→0

Q((∂∗Π ∩Br)?)
A(∂∗Br)

= lim
r→0

Q((∂∗H ∩Br)?)
A(∂∗Br)

. (A.8)

If the first limit exists for some Π, it also exists for H and, by consequence,
it exists for any other Π′ with normal n at x. On the other hand,

lim
r→0

Q((∂∗Π ∩Br)?)
A(∂∗Br)

= lim
r→0

Q((∂∗Π ∩Br)?)
A((∂∗Π ∩Br)?)

lim
r→0

A((∂∗Π ∩Br)?)
A(∂∗Br)

.

At A-almost every x on ∂∗Π, the first limit on the right is equal to s(x, ∂∗Π),
and the second limit is equal to one.64 By (A.8), the same conclusion holds
with Π replaced by H. This proves that

s(x, ∂∗Π) = s(x, ∂∗H) (A.9)

at all points x ∈ ∂∗Π at which the limit s(x, ∂∗Π) exists, that is, A-almost
everywhere on ∂∗Π.

If x is one of such points and if Π′ is another surface such that x ∈ ∂∗Π′
and n is the normal at x, in the same way as above it can be proved that

s(x, ∂∗Π′) = s(x, ∂∗H) . (A.10)

Then it is possible to denote by s(x, n) the common value of all s(x, ∂∗Π′),
and (4.13) follows from (A.9) and (A.10).

B Appendix. The cross product of a vector by a tensor

The cross product of a vector w by a second-order tensor A is the second-
order tensor (w ×A) such that65

(w ×A) v = w × (Av) (B.1)

64(Ziemer 1983), Eqn. (5).
65From (Antman & Osborn 1979), modified.
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for all vectors v. In components,

(w ×A)ij = eihkwhAkj . (B.2)

In particular, w × I is the second-order tensor such that

(w × I) v = w × v (B.3)

for all v. By definition, (w × I) is the skew-symmetric tensor associated
with w. In components, for W = w×I the relations

Wij = eikjwk , wi = 1
2ejikWjk (B.4)

hold. In particular, let V and W be the skew-symmetric tensors associated
with v and w, respectively. Then, by (B.1),

2w · v = ejikWjkvi = −(v ×W )ii = −I · (v ×W ) , (B.5)

and, by (B.1) and (B.3),

v ×W = (v × I)W = VW . (B.6)

Then, by the skew-symmetry of V and W ,

2w · v = −I · VW = V ·W . (B.7)

Finally, consider the curl of a vector field v

(curl v)h = ehsrvr,s .

By (B.2),

(curl v × I)ij = eihkehsrvr,sδkj = vi,j − vj,i = 2 (∇Wv)ij , (B.8)

that is, 2∇Wv is the skew-symmetric tensor associated with curl v.

Bibliography

[Ambrosio et al. 2000] L. Ambrosio, N. Fusco, D. Pallara, Functions of
Bounded Variation and Free Discontinuity Problems, Clarendon Press,
Oxford 2000

[Antman & Osborn 1979] S.S. Antman, J.E. Osborn, The principle of
virtual work and integral laws of motion, Arch. Ration. Mech. Anal.
69: 231-262 (1979)

37



[Bleustein 1967] J.L. Bleustein, A note on the boundary conditions of
Toupin’s strain-gradient theory, Int. J. Solids Structures 3: 1053-1057
(1967)

[Capriz 1985] G. Capriz, Continua with latent microstructure, Arch. Ra-
tion. Mech. Anal. 90: 43-56 (1985)

[Capriz 1989] G. Capriz, Continua with Microstructure, Springer, Berlin
1989

[Cauchy 1823] A.L. Cauchy, Recherches sur l’ équilibre et le mouvement
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[Kolmogorov & Fomin 1970] A.N. Kolmogorov, S.V. Fomin, Introductory
Real Analysis, Dover Publications, New York 1970

[Lanczos 1949] C. Lanczos, The Variational Principles of Mechanics, Uni-
versity of Toronto Press 1949. Reprint: Dover Publications, New York
1986

[Lucchesi et al. 2006] M. Lucchesi, M. Šilhavý, N. Zani, A new class of equi-
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