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Abstract. Following a recently proposed approach to continua with microstruc-

ture, the theories of unconstrained and constrained Cosserat continua are re-

formulated. The proposed formulation only requires the specification of the
form of the external power, plus some ad hoc indifference properties of the

internal power.

From the model constructed in this way, by adding kinematical constraints
which determine dimensional reduction, the classical equations for the bending

of plates and beams are re-obtained in a surprisingly simple way.

1. Introduction

An alternative approach to continua with microstructure has been proposed in the
papers [4, 5]. While the traditional formulations are based either on the balance
laws of Euler and Cauchy, or, more recently, on the principle of virtual power
[8, 9], the proposed approach is founded on a regularity property of the system
of contact actions. Indeed, the assumption that the contact actions are bounded
Cauchy fluxes [20] leads to an equation of virtual power, which states the equality
between an external and an internal power. The external power is the product of
the assumed kinematic variables by dual terms representing distance actions and
contact actions, and the internal power is the product of generalized internal forces
by generalized deformations. The two powers are not independent, as it is usually
assumed. They are equivalent expressions of the same power.

The internal power is restricted by indifference requirements, whose form is
dictated by the physical nature of the continuum. The resulting reduced form
of the internal power specifies the generalized internal forces and the generalized
deformations. That is, it determines the structural properties of the class of con-
tinua defined by the choice of the kinematic variables and by the specification of the
indifference requirements. Within each class, relations between generalized internal
forces and generalized deformations appropriate to specific materials are described
by constitutive equations.

In this communication, attention is focused on the formulation of the equilibrium
problem for continua with a particular type of microstructure, without considering
any explicit constitutive equation. Due to the infinitesimal character of the virtual
variations of the kinematic variables, the analysis is restricted to the incremental
equilibrium problem from an arbitrary deformed configuration. For convenience,
the current configuration is systematically taken as the reference configuration.

After introducing the equation of virtual power for micropolar continua, Section
2, in Section 3 the treatment is restricted to the Cosserat continua, which are
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characterized by a particular form of rotational indifference. Section 4 deals with
the constrained theory, obtained by imposing the coincidence between the local
rotations associated with the macroscopic and with the microscopic deformation.

The rest of the paper is devoted to the deduction of the classical bending theories
of plates, Section 5, and beams, Section 6. This is done by the dimensional reduction
obtained by imposing supplementary kinematic constraints to the three-dimensional
Cosserat continuum. Thanks to the assumption of a bounded Cauchy flux, the
deduction of plates and beams theories presented here is more simple and direct
than those available in the literature [6, 7, 10, 15].

It must be observed that the plate and beam theories do not enjoy the same level
of generality of the three-dimensional theory. Indeed, their range of application is
limited by the assumed cylindrical shape of the body. In general, this shape is
lost in a finite deformation. Therefore, it is impossible to preserve the advantages
of cylindrical geometry in the incremental problem from a deformed configuration.
Thus, the proposed formulation of the equilibrium problems for plates and beams
holds only for small deformations from a deformed configuration which keeps the
cylindrical geometry. A more general theory would require, at least, reference
configurations with the shape of a shell or of a curved beam, respectively, with
point-depending curvatures. This is out of the purposes of the present work.

Throughout the paper, all technical questions involving measure-theoretic con-
cepts are omitted. For example, no regularity assumption for the shape of a body
and of its parts is mentioned. In fact, a body is required to be a set of finite perime-
ter, and its boundary and the corresponding normal vector must be understood in
the measure-thoretic sense. For a more complete presentation, the interested reader
is addressed to the paper [5].

2. Micropolar continua

Following the definition given in [5], by a micropolar continuum we mean a con-
tinuum whose deformation is characterized by a vector field u, the macroscopic
displacement, plus a finite number of vector fields dα, the directors. The latter
represent material directions which affect the body’s response at the microscopic
level. For example, the orientations of the crystalline lattice or the directions of
crystal defects. The integral1

(2.1)
Pext(Π, v, να) =

∫
Π

(b(x) · v(x) + βα(x) · να(x)) dV

+
∫
∂Π

(s(x) · v(x) + σα(x) · να(x)) dA

is the virtual power exerted on the portion Π of the body by virtual variations v and
να of u and dα. The virtual displacements v act on given systems b of body forces
and s of surface tractions, and the virtual velocities να act on given systems βα of
body microforces and σα of surface microtractions. Under appropriate regularity
assumptions,2 it can be proved that the systems s and σα admit a volume density.

1Here and in the following, summation over repeated indices is assumed.
2That is, if s and all σα are the surface densities of bounded Cauchy fluxes, see [5], Sect. 4.
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That is, there exist vector fields f, φα defined over the volume, such that

(2.2)
∫

Π

f(x) dV +
∫
∂Π

s(x) dA = 0 ,
∫

Π

φα(x) dV +
∫
∂Π

σα(x) dA = 0 ,

for all parts Π of the body. These are the macroscopic and microscopic pseudoba-
lance equations, respectively. By Noll’s theorem on the dependence of the contact
forces on the normal3 and by Cauchy’s tetrahedron theorem, from these equations
the existence of second-order tensor fields T and Σα follows, such that

(2.3) s(x) = T (x)n , σα(x) = Σα(x)n ,

where n is the exterior unit normal to Π. Substituting into the expression of the
external power and using the divergence theorem, the right-hand side of (2.1) takes
the form4

(2.4)
∫

Π

(
(divT + b) · v + T · ∇v + (divΣα+ βα) · να + Σα · ∇να

)
dV .

This integral is called the internal power, and is denoted by Pint(Π, v, να). As
pointed out in the Introduction, this is not a power of independently assumed
internal forces. As a consequence of the pseudobalance equations, this is just an
alternative expression of the external power. That is, external power and internal
power are two equivalent expressions of the same virtual power, and the equation
of virtual power

(2.5) Pext(Π, v, να) = Pint(Π, v, να)

is in fact an identity, which holds for all bounded Cauchy fluxes.
The virtual power is subject to indifference requirements: it must be insensitive

to rigid virtual velocities v, να. What rigid means, depends on the physical nature of
the order parameters. In the next Sections, definitions appropriate to unconstrained
and to constrained Cosserat continua will be given.

The indifference restrictions produce the fundamental balance laws of mechanics,
which are classically considered as postulates.5 Specifically, the indifference to rigid
translations produces the balance law of linear momentum, and the indifference to
rigid rotations produces the balance law of angular momentum. When substituted
in the expression (2.4) of the virtual power, the two laws determine which ones
of the terms (divT + b), T , (divΣα+ βα), Σα are generalized forces and which
ones are reactions. The difference is that, as shown in the following Sections, the
reactions are determined by the generalized forces, while the latter are related to
the generalized deformations by constitutive equations.

The differential system made of the balance equations plus the constitutive equa-
tions, completed by appropriate boundary conditions, forms the incremental equi-
librium problem for the micropolar continuum.6 The rest of the paper is devoted
to the formulation of this problem for three-, two-, and one-dimensional Cosserat

3Noll [16]. For a proof in the context of measure theory see [5], Theorem 4.3.
4From here onwards, the argument x is omitted for simplicity.
5Noll [17]. The deduction of the balance laws from indifference conditions is a special case

of Noether’s theorem on the correspondence between indifference properties of a functional and
conservation laws, see e.g. [12], p. 403.

6The adjective incremental refers to the fact that the equilibrium problem stated below deter-
mines the response to a small perturbation of the data, starting from a known deformed equilibrium

configuration.
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continua.

3. The Cosserat continuum

A Cosserat continuum is a micropolar continuum characterized by an orthonormal
triplet of directors dα, which remains orthonormal in all deformed configurations.
In a virtual deformation, at any point x the triplet undergoes a rigid rotation
described by a vector ω(x). The virtual velocity is

(3.1) να(x) = ω(x)× dα(x) ,

and, omitting again the argument x, the corresponding virtual powers are

(3.2)
βα · να = βα · ω × dα = dα× βα · ω ,
σα · να = σα · ω × dα = dα× σα · ω .

By defining the body couple and the surface couple

(3.3) c = dα× βα , m = dα× σα ,
with summation over the repeated indices α, the external power takes the form

(3.4) Pext(Π, v, ω) =
∫

Π

(b · v + c · ω) dV +
∫
∂∗Π

(s · v +m · ω) dA .

Comparison with (2.1) shows that a Cosserat continuum is a micropolar continuum
with a single order parameter ω. By consequence, there is only one microscopic
pseudobalance equation (2.2)2, and equations (2.3) are replaced by

(3.5) s = Tn , m = Mn ,

with T the Cauchy stress tensor and M the couple-stress tensor. The internal
power (2.4) then takes the form

(3.6) Pint(Π, v, ω) =
∫

Π

(
(divT + b) · v + T · ∇v + (divM + c) · ω +M · ∇ω

)
dV.

For a Cosserat continuum, the rigid virtual velocities are the rigid translations of
the body, v(x) = a, and the simultaneous rigid rotations of the body and of the
directors

(3.7) v(x) = a× x , ω(x) = a .

Therefore, the indifference conditions are

(3.8) Pint(Π, a, 0) = 0 , Pint(Π, a× x, a) = 0 .

They must be satisfied for all vectors a. Using the arbitrariness of Π, the transla-
tional indifference condition provides the balance equation of linear momentum7

(3.9) divT + b = 0 .

Moreover, denoting by t the vector associated with the skew-symmetric part of T

(3.10) ti = 1
2 ekijTkj ,

the identity

T · ∇(a× x) = 2 t · a , Tkj ekih ai xh,j = Tkj ekij ai = 2 ti ai ,

7Inertia forces can be included as particular body forces and microforces, see [17], Sect. 7.
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holds. Then the rotational indifference condition requires that

(3.11) divM + c+ 2 t = 0 , Mij,j + ci + ekijTkj = 0 .

This is the form taken by the balance equation of angular momentum for the
Cosserat continuum. It says that the Cauchy stress is not symmetric, and that
its skew-symmetric part is determined by M and c.

Equations (3.9) and (3.11) are the equilibrium equations at the internal points
of the body Ω, and equations (3.5) are the boundary conditions of traction, to
be imposed at the free part of the boundary, that is, at the boundary points of
Ω at which the contact forces s and the contact couples m are prescribed. At
the remaining boundary points of Ω, the boundary conditions of place must be
prescribed. They consist in prescribing the values of v and ω

(3.12) v(x) = v̂(x) , ω(x) = ω̂(x) .

To complete the formulation of the equilibrium problem, it is necessary to prescribe
constitutive equations between generalized forces and generalized deformations. To
define these objects, let us introduce the decompositions of T and ∇v into the sums
of their symmetric and skew-symmetric parts

(3.13) T = TS+ TW , ∇v = ∇Sv +∇Wv , T · ∇v = TS · ∇Sv + TW · ∇Wv .
Using the balance equations and the identity

(3.14) TW · ∇Wv = t · curl v .

which is a consequence of (3.10), the internal power (3.6) can be given the form

(3.15) Pint(Π, v, ω) =
∫

Π

(
TS · ∇Sv + t · (curl v − 2ω) +M · ∇ω

)
dV.

It shows that the generalized forces are TS , t and M , and that the corresponding
generalized deformations are ∇Sv, 2ϕ and ∇ω, where

(3.16) ϕ = 1
2 curl v − ω

is the virtual relative rotation between the body and the triad of the directors.
Thus, for an elastic Cosserat continuum the constitutive equations have the form

(3.17)
TS= T̂S(∇Sv, 2ϕ,∇ω) , t= t̂(∇Sv, 2ϕ,∇ω) ,

M= M̂(∇Sv, 2ϕ,∇ω) .

Using the identity

(3.18) curl t = −divTW ,

which follows from (3.10), the equilibrium equation (3.9) can be expressed in terms
of the generalized forces

(3.19) divTS − curl t+ b = 0 , TSij,j − eijk tk,j + bi = 0 .

For the boundary conditions of traction (3.5)1, again from (3.10),

(3.20) si = Tij nj = (TSij − eijktk)nj .

In a local orthonormal reference system {ei} with e3 = n we have

(3.21) si = Tin = TSin + eikntk ,

and, writing separately the normal and the tangent components and setting

(3.22) eαβn = eαβ ,
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we finally get

(3.23) TSnn = sn , TSαn + eαβtβ = sα .

Similarly, from conditions (3.5)2 we get

(3.24) Mnn = mn , Mαn = mα .

In their final form, the equations of the incremental equilibrium problem for the
elastic Cosserat continuum are collected in Table 1 at the end of the paper.

4. The constrained Cosserat continuum

In view of the deduction of engineering theories for plates and beams, consider the
Cosserat continuum subject to the kinematic constraint8

(4.1) ω = 1
2 curl v .

This constraint imposes that the relative rotation (3.16) be zero at all points of
the body and in all virtual deformations. By consequence, the external power (3.4)
becomes9

(4.2) Pext(Π, v) =
∫

Π

(b · v + 1
2 c · curl v) dV +

∫
∂Π

(s · v + 1
2 m · curl v) dA .

For sufficiently regular contact actions s and m the pseudobalance equations (2.2)
hold. Then there are second-order tensor fields T,M for which equations (3.5) are
satisfied. The expression (3.6) of the internal power follows, with ω replaced by
1
2curl v, and the indifference conditions (3.8) provide the balance equations (3.9)
and (3.11), and the reduced internal power

(4.3) Pint(Π, v) =
∫

Π

(TS · ∇Sv +M · 1
2 ∇curl v) dV.

The generalized forces are now TS and M , and the generalized deformations are
∇Sv and 1

2 curl v. By consequence, the constitutive equations are

(4.4) TS= T̂S(∇Sv, 1
2 curl v) , M= M̂(∇Sv, 1

2 curl v) .

The kinematic variables v and curl v are not independent, and in both expressions of
the power the volume terms involving curl v can be eliminated using the divergence

8Toupin [23], Sect. 11.
9Due to the constraint (4.1), the only variable left in the expression of the virtual power is v.

However, the presence of a hidden variable ω is revealed by the expression of the external power,
which has an extra term with respect to the power of a classical continuum. In the terminology
introduced in [2], this is a continuum with latent microstructure.
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theorem

(4.5)

Pext(Π, v) =
∫

Π

(bi vi + 1
2 ck eikjvi,j) dV +

∫
∂Π

(sivi + 1
2 mk eikjvi,j) dA

=
∫

Π

(bi− 1
2 ck,j eikj) vi dV +

∫
∂Π

(
(si+ 1

2 ck eikj nj) vi + 1
2 mk eikjvi,j

)
dA ,

Pint(Π, v) =
∫

Π

(
TSij vi,j + 1

2 Mkheikjvi,jh
)
dV

=
∫

Π

(
−TSij,j + 1

2 Mkh,hj eikj
)
vi dV

+
∫
∂Π

(
(TSij − 1

2 Mkh,heikj) vinj + 1
2 Mkheikjvi,jnh

)
dA .

Equating the two expressions of the power obtained in this way and using the
arbitrariness of vk, from the volume integrals we get

(4.6) TSij,j + bi + 1
2 eijk (Mkh,hj + ck,j) = 0 .

This is a combination of the equilibrium equations (3.9), (3.11) of the unconstrained
continuum. Indeed, by (3.11) and (3.19),

(4.7) curl (divM + c) = −2 curl t = 2 divTW = −2 (divTS + b) ,

and this is exactly equation (4.6). Moreover, equating the surface integrals on the
right sides of (4.5) we get

(4.8)
∫
∂Π

(
(si−TSijnj+ 1

2 (ck+Mkh,h) eikj nj) vi+ 1
2 (mk−Mkhnh) eikjvi,j

)
dA = 0 .

Of the gradient vi,j , only the normal component is an independent variable, the
tangential components being determined by the boundary values of vi. Therefore,
on ∂Π we take a local orthonormal reference system {eα, eβ , n}, with n the exterior
unit normal. After rewriting the last boundary term with separated normal and
tangential components10

(mk−Mkhnh) eikjvi,j = (mk−Mkn) (eiknvi,n + eikαvi,α)

= (mβ−Mβn) eαβvα,n + (mk−Mkn) eikβvi,β ,

a further application of the divergence theorem

(4.9)
∫
∂Π

(mk−Mkn) eikβvi,β dA = −
∫
∂Π

(mk−Mkn),β eikβvi dA ,

and substitution into (4.8) yields

(4.10)

∫
∂Π

(
(si−TSin + 1

2 (ck+Mkh,h) eikn − 1
2 (mk−Mkn),β eikβ) vi

+ 1
2 (mβ−Mβn) eαβ vα,n

)
dA = 0 .

This equation is satisfied by imposing the boundary conditions of place

(4.11) vα(x) = v̂α(x) , vn(x) = v̂n(x) , vα,n(x) = v̂α,n(x) ,

at the constrained part of the boundary, and the boundary conditions of traction

(4.12)
TSαn + 1

2 eαβ(Mnn,β −Mβh,h) = sα + 1
2 eαβ(cβ +mn,β) ,

TSnn + 1
2 eαβMβn,α= sn + 1

2 eαβmβ,α ,

Mαn= mα .

10In the second equality, eαβ = eαβn.
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at the free part of the boundary. There is no condition on the normal derivative
vn,n and on the corresponding surface traction. That is, the boundary conditions
to be satisfied are five, instead of the six of the unconstrained theory.11

Moreover, the last condition Mαn = mα implies Mβn,α = mβ,α. Therefore, the
second boundary condition simplifies to12

(4.13) TSnn = sn .

The equations of the equilibrium problem for the constrained Cosserat continuum
are collected in Table 1 at the end of the paper.

5. Plate theories

A plate can be viewed as a body of a cylindrical shape, made of a Cosserat conti-
nuum subjected to the kinematic constraints

(5.1) v(x) = v3(x1, x2) e3, ω(x) = ωα(x1, x2) eα,

with e3 the direction of the cylinder’s axis. The constraints require that, at all points
x, the displacement v(x) be parallel to e3 and the rotation ω(x) of the directors be
about an axis orthogonal to e3. Therefore, the three-dimensional vectors v and ω
degenerate into a scalar and into a two-dimensional vector, respectively. The same
do the associated vectors b, s and c, m. Then, the external power takes the form13

(5.2) Pext(Π, v, ω) =
∫

Π

(b3v3 + cαωα) dV +
∫
∂Π

(s3v3 +mαωα) dA .

The constraints (5.1) also require that both v and ω be independent of x3. There-
fore, the body can be identified with the cylinder’s cross section. With this di-
mensional reduction, the parts Π of the body reduce to plane surfaces, the volume
elements dV reduce to area elements, and the area elements dA reduce to line
elements. In spite of this, we prefer to keep the notation dV and dA.

The pseudobalance equations formally coincide with equations (2.2). However,
due to dimensional reduction, the stress tensor Tij degenerates into the vector Qα
of the internal shearing forces, and the couple-stress tensor Mij degenerates into
the 2× 2 tensor of the internal moments Mαβ . Therefore, equations (2.3) take the
form

(5.3) s3 = Qαnα , mα = Mαβnβ .

The component b3 of the body force is now viewed as a transverse load q. Thus,
the internal power (2.4) takes the form

(5.4) Pint(Π, v, ω) =
∫

Π

(
(Qα,α+ q) v3 +Qαv3,α + (Mαβ,β+ cα)ωα +Mαβωα,β

)
dV.

In the indifference requirements (3.8), a is now any vector orthogonal to e3. Ac-
cordingly, the balance equations (3.9), (3.11) become

(5.5) Qα,α+ q = 0 , Mαβ,β + cα + eαβ Qβ = 0 ,

11See Schaefer [19].
12In the more general context of second-gradient continua, a similar simplification was made

by Bleustein [1].
13From here onwards, Greek indices run from 1 to 2, and Latin indices run from 1 to 3.
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and substitution into (5.4) yields

(5.6) Pint(Π, v, ω) =
∫

Π

(
Qα(v3,α+ eαβωβ) +Mαβωα,β

)
dV.

Thus, the generalized forces are Qα and Mαβ , and the associated generalized de-
formation are the rotation gradient ∇ω and

(5.7) ϕα = v3,α+ eαβωβ ,

which is the two-dimensional counterpart of the relative rotation (3.16). The con-
stitutive equations for the elastic plate are

(5.8) Qα = Q̂α(ϕ,∇ω) , Mαβ = M̂αβ(ϕ,∇ω) .

Equations (5.5) and (5.8), plus the boundary conditions of place

(5.9) v3(x) = v̂3(x) , ωα(x) = ω̂α(x) ,

on the constrained part of ∂Ω and conditions (5.3) on the free part, rewritten as

(5.10) s3 = Qn , mα = Mαn ,

form the equilibrium problem for the Reissner theory of plates [18]. The equations
have been deduced from those of the three-dimensional Cosserat continuum, using
the dimensional reduction produced by the kinematic constraints (5.1).

Just as the constrained Cosserat continuum was obtained by introducing the kine-
matic constraint (4.1), the Kirchhoff-Love theory of plates [11, 13] can be deduced
from Reissner’s theory by imposing the kinematic constraint

(5.11) ωα = eαβv3,β ,

which requires that the relative rotation (5.7) be zero. With this restriction, the
external power (5.2) reduces to

(5.12) Pext(Π, v) =
∫

Π

(b3v3 + cαeαβv3,β) dV +
∫
∂Π

(s3v3 +mαeαβv3,β) dA .

Using equations (5.3) and setting b3 = q and14

(5.13) c∗β = cαeαβ , m∗β = mαeαβ , M∗βγ = Mαγeαβ ,

after an integration by parts, the internal power

(5.14) Pint(Π, v) =
∫

Π

(
(Qβ,β+ q) v3 +Qβv3,β + (M∗βγ,γ+ c∗β) v3,β +M∗βγv3,βγ

)
dV

is obtained. The indifference requirements (3.8) now provide the balance equations

(5.15) Qβ,β+ q = 0 , M∗βγ,γ + c∗β +Qβ = 0 ,

and the internal power reduces to

(5.16) Pint(Π, v) =
∫

Π

M∗αβv3,αβ dV.

Thus, there is a single generalized force, M∗αβ , and the associated generalized de-
formation is v3,αβ . By the symmetry of the second derivative, only the symmetric

14The moments M∗
11 and M∗

22 are bending moments, and M∗
12 and M∗

21 are twisting moments.

They are the moments currently used in plate theories, see, e.g., [22], Sect. 21, Fig. 47.
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part M∗S of M∗ contributes to the power. That is, M∗S is the effective generalized
force. Accordingly, the constitutive equation has the form

(5.17) M∗Sαβ = M̂∗Sαβ (∇∇v3) .

To get appropriate boundary conditions, we follow the same procedure adopted for
the three-dimensional constrained continuum. First, using the divergence theorem,
we eliminate from the volume integrals in (5.12) and (5.16) the terms involving the
derivatives of v3

(5.18)

Pext(Π, v) =
∫

Π

(q v3 + c∗α v3,α) dV +
∫
∂Π

(s3v3 +m∗α v3,α) dA

=
∫

Π

(q − c∗α,α) v3 dV +
∫
∂Π

(
(s3 + c∗α nα) v3 +m∗αv3,α

)
dA ,

Pint(Π, v) =
∫

Π

M∗αβ,αβv3 dV +
∫
∂Π

(
M∗αβv3,αnβ −M∗αβ,βv3nα

)
dA .

Then, comparing the volume terms and observing that M∗αβ,αβ = M∗Sαβ,αβ , we get
the field equation

(5.19) M∗Sαβ,αβ + c∗α,α − q = 0 ,

and comparing the boundary terms we have

(5.20)
∫
∂Π

(
(M∗αβ,βnα + s3 + c∗α nα) v3 − (M∗αβnβ −m∗α) v3,α

)
dA = 0 .

Like in the three-dimensional constrained theory, only the component of v3,α normal
to the boundary is independent, the tangential component being determined by the
values of v3 at the boundary. Therefore, keeping e3 in the direction of the cylinder’s
axis, we take a local reference system with e1, e2 coincident with the outward normal
n and the tangent vector τ to the lateral surface, respectively. Then, with a further
use of the divergence theorem, the last equation transforms as follows

(5.21)
0 =

∫
∂Π

(
(M∗nβ,β+s3+c∗n) v3 − (M∗τn−m∗τ ) v3,τ − (M∗nn−m∗n) v3,n

)
dA

=
∫
∂Π

(
(M∗nβ,β+M∗τn,τ+s3+c∗n −m∗τ,τ ) v3 − (M∗nn−m∗n) v3,n

)
dA .

At each point on the constrained part of the boundary are prescribed the conditions
of place

(5.22) v3(x) = v̂3(x) , v3,n(x) = v̂3,n(x) ,

and at each point on the free part of the boundary are prescribed the conditions of
traction

M∗nβ,β+M∗τn,τ+s3+c∗n −m∗τ,τ = 0 , M∗nn−m∗n = 0 .

In the first condition,

M∗nβ,β+M∗τn,τ = M∗nn,n+M∗nτ,τ+M∗τn,τ = M∗Snn,n+2M∗Snτ,τ ,

and because M∗nn = M∗Snn , the conditions of traction become

(5.23) M∗Snn,n + 2M∗Snτ,τ + s3 + c∗n −m∗τ,τ = 0 , M∗Snn −m∗n = 0 .

Like in the three-dimensional case, the number of the boundary conditions is smaller
in the constrained model. Indeed, the three scalar conditions (5.10) reduce to the
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two conditions (5.23).

6. Beam theories

In classical beam theories, a beam is viewed as a body with a cylindrical shape,
made of a Cosserat continuum subjected to the kinematic constraint

(6.1) v(x) = vα(x3) eα , ω(x) = ωα(x3) eα ,

with e3 the direction of the cylinder’s axis. Under such constraint, each cross section
of the cylinder undergoes a rigid translation vα orthogonal to e3, and the triple of
the directors undergoes a rigid rotation ω about an axis orthogonal to e3. Thus,
the body can be reduced to the cylinder’s axis, the parts Π of the body reduce to
intervals (a, b), and the boundary ∂Π reduces to the endpoints a, b. The external
power takes the form

(6.2) Pext((a, b), v, ω) =
∫ b

a

(qαvα+cαωα) dx3+
(
Pαvα+Cαωα

)
b
+
(
Pαvα+Cαωα

)
a
,

where qα and cα are distributed forces and couples per unit length, and Pα and Cα
are the concentrated couples and forces representing the contact actions between
(a, b) and the rest of the beam.

The pseudobalance equations now imply the existence of two fields of internal
forces, the shearing force Qα and the bending moment Mα, such that

(6.3) Pα = Qαn , Cα = Mαn .

The exterior unit normal n to the cross section is e3 at x3 = b and −e3 at x3 = a.
Substituting into (6.2) and integrating by parts one gets the expression of the
internal power

(6.4) Pint((a, b), v, ω) =
∫ b

a

(
(qα+Q′α) vα +Qαv

′
α + (cα+M ′α)ωα +Mαω

′
α

)
dx3 ,

where a prime denotes differentiation with respect to x3. The indifference conditions
have again the form (3.8), with a a vector parallel to e3. They express indifference
of the power to rigid translations of the segment (a, b) in the direction of e3, and
to simultaneous rigid rotations of (a, b) and of the triple of the directors about any
axis orthogonal to e3. They provide the balance equations

(6.5) qα +Q′α = 0 , cα +M ′α − eαβ Qβ = 0 ,

which, substituted into (6.4), yield the internal power

(6.6) Pint((a, b), v, ω) =
∫ b

a

(
Qα(v′α − eαβ ωβ) +Mαω

′
α

)
dx3 .

This equation shows that for the beam model the generalized internal forces are
Mα and Qα, and the corresponding generalized deformations are ω′α and

(6.7) ϕα = v′α−eαβ ωβ .

The latter is the one-dimensional counterpart of the relative rotation (3.16). For
an elastic material, the constitutive equations are of the form

(6.8) Qα = Q̂α(ϕ, ω′) , Mα = M̂α(ϕ, ω′) .
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Together with the equilibrium equations (6.5), the boundary conditions of place

(6.9) v3(l) = v3l , v3(0) = v30 , ωα(l) = ωαl , ωα(0) = ωα0 ,

and the boundary conditions of traction, they form the equilibrium problem for
the Timoshenko beam theory. By (6.3) with n3 = ±1, the boundary conditions of
traction are

(6.10) Qα(l) = Pαl , Qα(0) = −Pα0

for the concentrated forces Pαl, Pα0 applied at the endpoints of the beam, and

(6.11) Mα(l) = Cαl , Mα(0) = −Cα0 ,

for the concentrated couples applied at the same points.

The Euler-Bernoulli beam theory is obtained by imposing the kinematic constraint

(6.12) ωα = −eαβ v′β ,
which consists in assuming that the relative rotation (6.7) is identically zero. Under
this constraint, the external power (6.2) becomes

(6.13) Pext((a, b), v) =
∫ b

a

(qαvα−cα eαβv′β) dx3

+
(
Pαvα−Cα eαβv′β

)
b

+
(
Pαvα−Cα eαβv′β

)
a
,

and using equations (6.3) and the equilibrium equations (6.5) the internal power
(6.6) reduces to

(6.14) Pint((a, b), v) = −
∫ b

a

Mα eαβv
′′
β dx3 .

The unique generalized force is Mα, the generalized deformation is the curvature
vector κα=−eαβv′′β , and the constitutive equation is

(6.15) Mα = M̂α(κ) .

Moreover, integrating by parts equations (6.13), (6.14), we get
(6.16)

Pext((a, b), v) =
∫ b

a

(qα−eαβc′β) vα dx3

+
(
(Pα+eαβcβ) vα−Cα eαβ v′β

)
b

+
(
(Pα−eαβcβ) vα−Cα eαβ v′β

)
a
,

Pint((a, b), v) =
∫ b

a

Mβ eαβv
′′
α dx3

=
∫ b

a

M ′′β eαβvα dx3 +
(
Mβ eαβ v

′
α−M ′βeαβ vα

)
b
−
(
Mβ eαβ v

′
α−M ′βeαβ vα

)
a
.

Comparing the two integrals, from the arbitrariness of vα we obtain

(6.17) M ′′α + c′α + eαβqβ = 0 ,

which is a combination of the equilibrium equations (6.5). Moreover, at the end-
point x = l,

(6.18) M ′α(l) + cα(l) = eαβPβl , Mα(l) = Cαl ,

and at the endpoint x = 0,

(6.19) M ′α(0) + cα(0) = −eαβPβ0 , Mα(0) = −Cα0 .
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The boundary conditions of place consist in prescribing the displacements vα and
the rotations v′α
(6.20) vα(l) = vαl , vα(0) = vα0 , v′α(l) = v′αl , v′α(0) = v′α0 .

7. Conclusion

In the preceding Sections, the equilibrium problems for some classical theories of
plates and beams have been deduced formally from the equilibrium problem of the
three-dimensional Cosserat continuum, unconstrained and constrained, by imposing
appropriate kinematic constraints to the body’s deformation. The field equations
and the boundary conditions of the considered problems are collected in Table 1.
For an easier comparison, all equations are written in components.
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[9] P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure,

SIAM J. Appl. Math. 25: 556-575 (1973)
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