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These Notes cover four of the six lectures delivered at the Course. Their subject has

been developed in the forthcoming paper (Del Piero 2013a). The two remaining lectures

held in the Course were a concise presentation of the contents of the forthcoming lecture

notes (Del Piero 2013b).

1 Classical mechanics and classical continua

The name classical mechanics generally denotes the traditional branch of
mechanics, as opposed to special disciplines, such as quantum mechanics,
relativistic mechanics, or statistical mechanics. Continuum mechanics is
the branch of classical mechanics which deals with continuous deformable
bodies. Its most traditional object of study, the classical continuum, is a
continuum for which the external action consists of two systems of forces,
the body forces and the surface tractions. Larger varieties of external actions
define classes of non-classical continua.

Classical mechanics is based on Newton’s three laws of motion. Clas-
sical continua are governed by Euler’s balance laws of linear and angular
momentum, which are direct consequences of Newton’s first two laws.1 The
absence of the third law may look strange. In fact, as we shall see, this
absence is a peculiarity of classical continua. In non-classical continua, the
third law recovers its fundamental role. This is a point which is neither
self-evident nor generally acknowledged, and this is one of the reasons that
make interesting the study of non-classical continua.

1(Truesdell & Toupin 1960), Sect. 196.
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1.1 The traditional approach

A classical continuum is defined by two primitive elements:

(i) a continuous body Ω,

(ii) a system (b, s) of external actions.

The body is identified with the region of the three-dimensional Euclidean
point space E occupied in a reference configuration. In the present Notes,
to avoid the machinery required for changes of configurations, the current
configuration is systematically taken as the reference configuration. More-
over, each point x is identified with the position vector x−o, with the origin
o chosen once for all.

The vector b(x) is the body force at the interior point x of Ω, and for
every subregion Π of Ω the vector s(x, ∂Π) is the surface traction at x ∈ ∂Π.
Both b and s are supposed to be integrable in the respective domains. They
are subject to Euler’s balance laws of linear and angular momentum∫

Π

b(x) dV +
∫
∂Π

s(x, ∂Π) dA = 0 ,∫
Π

x× b(x) dV +
∫
∂Π

x× s(x, ∂Π) dA = 0 ,
(1)

which are assumed to hold for every subregion Π of Ω.2

The first balance law has three important consequences on the structure
of the contact actions:

(i) (the action-reaction law) If Π1 and Π2 are subregions of Ω with dis-
joint interiors and if xo belongs to the boundary of both, then

s(xo, ∂Π1) = −s(xo, ∂Π2) , (2)

(ii) (the dependence on the normal) The surface traction s(xo, ∂Π) de-
pends on ∂Π only through the exterior unit normal n to ∂Π at xo

s(xo, ∂Π) = s(xo, n) , (3)

(iii) (the existence of the stress tensor) The function s(xo, · ) is linear.
That is, there is a second-order tensor T such that

s(xo, n) = T (xo)n . (4)

2Inertia forces are included in the body forces, see (Noll 1963), Sect. 7.
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Proofs of these statements are sketched in the next Subsection. Note that,
by (3), the action-reaction law (2) takes the form

s(xo, n) = −s(xo,−n) . (5)

Substituting (4) into the first balance equation and using the Gauss-Green
formula, one has∫

Π

b(x) dV = −
∫
∂Π

T (x)ndV = −
∫

Π

divT (x) dV , (6)

and from the arbitrariness of Π the local equation

divT (x) + b(x) = 0 (7)

follows. Recalling that the cross product a × b is twice the opposite of the
vector associated with the skew-symmetric part of the tensor a ⊗ b, the
second balance equation (1)2 imposes the symmetry of the tensor∫

Π

x⊗ b(x) dV +
∫
∂Π

x⊗ T (x)ndA .

Using again the Gauss-Green formula, this tensor takes the form∫
Π

(
x⊗ (b(x) + divT (x)) + TT (x)

)
dV . (8)

Then, by (7) and the arbitrariness of Π, condition (1)2 reduces to the re-
quirement of the symmetry of T (x)

T (x) = TT (x) . (9)

Equations (7) and (9) are the local forms of the balance equations (1).
Together with costitutive equations, initial conditions, and boundary con-
ditions, they constitute the differential, or strong, formulation of the problem
of motion. The equilibrium problem is the special case in which inertia forces
are absent, and all time-dependent variables are neglected.

1.2 Sketch of the proofs

For the purpose of the present Notes, it is useful to give an idea of the proofs
of the statements (i) to (iii) of the previous Subsection. The proofs given
below are informal. Rigorous proofs would require precise definitions of the
objects involved, for example, regions and surfaces, and a precise statement
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Figure 1. Two-dimensional sketches for: the decomposition of a region Π
into the union of regions Π1 and Π2 with disjoint interiors (a), the region
Πε (shaded area) used in the proof of Noll’s theorem on the dependence on
the normal (b), Cauchy’s tetrahedron theorem (c).

of the regularity conditions which legitimate the use of the Gauss-Green
formula.3

All proofs require the following assumption of local dependence of s on
∂Π: for every x ∈ ∂Π there is an ε > 0 such that

s(x, ∂Π) = s(x, ∂Π ∩Bε(x)) , (10)

where Bε(x) is the ball of radius ε > 0 centered at x.4

Proof of (i).5 Let Π be the disjoint union of two subregions Π1 and Π2, as
shown in Fig. 1a. By the additivity of the volume integral,∫

Π

b(x) dV =
∫

Π1

b(x) dV +
∫

Π2

b(x) dV , (11)

and by the first balance equation written for Π,Π1, and Π2,∫
∂Π

s(x, ∂Π) dA =
∫
∂Π1

s(x, ∂Π1) dA+
∫
∂Π2

s(x, ∂Π2) dA . (12)

To within sets of area zero, the three surfaces are the disjoint unions

∂Π = S1 ∪ S2 , ∂Π1 = S1 ∪ S , ∂Π2 = S2 ∪ S , (13)

3All this falls into the domain of geometric measure theory. The interested reader is

addressed to the books (Vol’pert & Hudjaev 1985) and (Capriz 1989), and to the

papers (Ziemer 1983), (Šilhavý 1985, 1991), (Gurtin et al. 1986), (Capriz & Virga

1990), (Schuricht 2007), (Chen et al. 2009).
4This is the principle of local action, (Truesdell & Noll 1965).
5(Noll 1959), Theorem III.
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with

S = ∂Π1\ ∂Π = ∂Π2\ ∂Π , S1 = ∂Π ∩ ∂Π1 , S2 = ∂Π ∩ ∂Π2 . (14)

By the additivity of the surface integral, from (12) and (13) we get∫
S1

s(x, ∂Π) dA+
∫
S2

s(x, ∂Π) dA =
∫
S1

s(x, ∂Π1) dA

+
∫
S
s(x, ∂Π1) dA+

∫
S2

s(x, ∂Π2) dA+
∫
S
s(x, ∂Π2) dA .

(15)

By assumption (10), the two integrals over S1 cancel. The same do the two
integrals over S2. It remains∫

S

(
s(x, ∂Π1) + s(x, ∂Π2)

)
dA = 0 .

The surface ∂Π has a natural orientation, with the interior on the side of
Π and the exterior on the side of Ω \ Π. The same holds for ∂Π1 and
∂Π2. When, as in (13), these regions are split into subsurfaces S1,S2,S, the
subsurfaces inherit the corresponding orientations. That is, S1 is oriented as
∂Π in (13)1 and as ∂Π1 in (13)2, and the two orientations coincide because
the interiors of Π and Π1 are on the same side of the surface.

The same holds for S2. On the contrary, S is oriented as ∂Π1 in (13)2

and as ∂Π2 in (13)3, and the two orientations are opposite. Let us denote
by S⇀ the surface S oriented with the interior on the side of Π1, and by S↼

the same surface with the interior on the side of Π2. Then, by (10),∫
S

(
s(x,S

⇀

) + s(x,S
↼

)
)
dA = 0 . (16)

Take a point xo in S, and let Sε be the intersection of S with Bε(xo). If

lim
ε→0

1
A(Sε)

∫
Sε

s(x,S
⇀

) dA = s(xo,S
⇀

) ,

lim
ε→0

1
A(Sε)

∫
Sε

s(x,S
↼

) dA = s(xo,S
↼

) ,
(17)

then, by (16),
s(xo,S

⇀

) = −s(xo,S
↼

) . (18)

This shows that s depends on the orientation of the surface, in the way
stated in (2).
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Proof of (ii).6 Let xo be an interior point of Ω, and let S be a smooth
surface with unit normal n at xo. Moreover, let P be the tangent plane to
S at xo, and let Cε be the cylinder of radius ε, whose axis is the line parallel
to n from xo. Let, further, Πε be the part of Cε included between S and P.
As shown in Fig. 1b, the boundary ∂Πε is the disjoint union

∂Πε = (∂Πε ∩ S) ∪ (∂Πε ∩ P) ∪ (∂Πε ∩ ∂Cε) . (19)

Then, by the balance equation (1)1,∫
Πε

b(x) dV +
∫
∂Πε∩S
s(x,S) dA+

∫
∂Πε∩P
s(x,P) dA+

∫
∂Πε∩∂Cε

s(x, ∂Cε) dA = 0 . (20)

The areas of the surfaces in ∂Πε and the volume of Πε are

A(∂Πε ∩ P) = πε2 , A(∂Πε ∩ S) = πε2+ o(ε2) ,

A(∂Πε ∩ ∂Cε) = o(ε2) , V (Πε) = o(ε3) ,
(21)

respectively. If

lim
ε→0

1
A(∂Πε ∩ P)

∫
∂Πε∩P
s(x,P) dA = s(xo,P) ,

lim
ε→0

1
A(∂Πε ∩ S)

∫
∂Πε∩S
s(x,S) dA = s(xo,S) ,

lim
ε→0

1
A(∂Πε ∩ ∂Cε)

∫
∂Πε∩∂Cε

s(x, ∂Cε) dA = 0 ,

(22)

from (20) divided by πε2, in the limit for ε→ 0 it follows that

s(xo,S) + s(xo,P) = 0 .

Denoting by P⇀ ,S⇀ the surfaces P,S oriented with the exterior normal n,
this equation becomes s(xo,S

↼

) + s(xo,P
⇀

) = 0. That is, by (18),

s(xo,S
⇀

) = s(xo,P
⇀

) .

This equality holds for every oriented surface S⇀ with exterior normal n at
xo. Therefore, s(xo,S

⇀

) is the same for all such surfaces, and (3) follows.

Proof of (iii).7 Consider an interior point xo of Ω, an orthonormal basis ei,
and a unit vector n with components

ni = n · ei . (23)

6(Noll 1959), Theorem IV.
7(Cauchy 1823).
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There is no loss in generality in choosing the orientations of the ei such that
all ni are positive.

For fixed ε > 0, let Πε be the region between the planes through xo with
normals ei, and the plane through xo + εn with normal n. As shown in the
simplified two-dimensional representation of Fig. 1c, Πε is the tetrahedron
with vertex xo and height ε, whose basis Pε has exterior unit normal n,
while the three faces Piε have exterior unit normals −ei. Then, by (3) and
the balance equation (1)1,∫

Πε

b(x) dV +
∫
Pε

s(x, n) dA+
3∑
i=1

∫
Pi

ε

s(x,−ei) dA = 0 . (24)

If A(Pε) is the area of the basis, the areas of the faces and the volume of
Πε are

A(Piε) = A(Pε)ni , V (Πε) = 1
3 εA(Pε) , (25)

respectively. If

lim
ε→0

1
A(Piε)

∫
Pi

ε

s(x,−ei) dA = s(xo,−ei) ,

lim
ε→0

1
A(Pε)

∫
Pε

s(x, n) dA = s(xo, n) ,
(26)

from (24) divided by A(Pε), in the limit for ε→ 0 one gets

s(xo, n) +
3∑
i=1

s(xo,−ei)ni = 0 . (27)

That is, by (5),

s(xo, n) =
3∑
i=1

s(xo, ei) (n · ei) =
( 3∑
i=1

s(xo, ei)⊗ ei
)
n . (28)

This is the desired relation (4), with

T (x) =
3∑
i=1

s(x, ei)⊗ ei . (29)

Equations (17), (22), and (26) are the delicate parts of the proofs. In
(17), (22)1, (22)2, and (26)1, the limit is made over a family of subsurfaces
of a fixed surface, and all members of the family contain the point xo. Then
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the corresponding equalities hold for almost every xo on the surface.8 On the
contrary, the limits in (22)3 and (26)2 are made over families of pairwise
disjoint surfaces Pε, none of which contains xo. In this case, the extra
assumption of the continuity of s( · , n) at xo would be required. However,
in (Gurtin et al. 1968), using a mollifying procedure, this requirement has
been replaced by the milder assumption of s( · , n) integrable in Ω.

All proofs given above refer to a vector field s(x, n). Similar statements
hold for scalar fields and for tensor fields of any order. For a scalar field σ,
it can be proved that there exists a vector field Σ such that9

σ(x, n) = Σ(x) · n , σ = Σi ni , (30)

and for a second-order tensor field S it can be proved that there exists a
third-order tensor field T such that

S(x, n) = T(x)n , Sij = Tijk nk . (31)

1.3 The indifference of power

In continuum mechanics, the balance equations (1) are taken as postulates.
This view, which works perfectly for classical continua, cannot be easily
generalized to non-classical continua. This justifies a re-consideration of
the position of the balance equations in the theory.

A first step in this direction was to show that the balance equations
can be deduced from the more fundamental principle of indifference of the
external power under changes of observer.10 To state this principle we
need to add a third object to the two primitive elements mentioned above
as essential to define a classical continuum. This is the set of the virtual
displacements.

Virtual displacements are the initial velocities in a possible motion from
the current configuration. With every virtual displacement v is associated
the external power

Pext(Π, v) =
∫

Π

b(x) · v(x) dV +
∫
∂Π

s(x, ∂Π) · v(x) dA , (32)

spent in the portion Π of the body by the system (b, s) of external actions.
Since the motion need not be a real motion, the velocities are called virtual

8That is, to within a set of zero volume. This is by the Lebesgue-Besicovitch theorem,

see e.g. (Evans & Gariepy 1992), Section 1.7.
9With summation over repeated indices. For a proof of (31) see (Del Piero 2009).

10(Noll 1963).
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velocities or virtual displacements, and the just defined external power is
called a virtual power.

Because they describe infinitesimal changes of the current configuration,
the virtual displacements are considered as infinitesimal. A change of ob-
server is a transformation

v(x) 7→ v(x) + c+Wx , (33)

with c an arbitrary vector and W an arbitrary skew-symmetric tensor. This
is the most general infinitesimal transformation which leaves unaltered the
mutual distances betwen all pairs of points of Ω. It seems reasonable to
assume that the power associated with such transformations is zero. In
view of the linearity of Pext(Π, · ), the indifference of the external power to
all transformations of the type (33) is expressed by the conditions

Pext(Π, c) = 0 , Pext(Π,Wx) = 0 . (34)

They are called the condition of translational and of rotational indifference,
respectively. The first condition gives directly the balance equation (1)1.
The second gives the equation

W ·
(∫

Π

b(x)⊗ x dV +
∫
∂Π

s(x, ∂Π)⊗ x dA
)
,

from which (1)2 follows. Because the balance equations (1) are consequences
of the indifference of power, the latter can be taken as a basic postulate of
classical continuum mechanics in place of Euler’s balance laws.

1.4 The method of virtual power

With the use of the local balance equations (7), (9), and of the Gauss-Green
formula, the external power can be transformed into a volume integral∫

Π

b(x) · v(x) dV +
∫
∂Π

s(x, ∂Π) · v(x) dA

= −
∫

Π

divT (x) · v(x) dV +
∫
∂Π

T (x)n · v(x) dA =
∫

Π

T (x) · ∇v(x) dV ,

called the internal power and denoted by Pint(Π, v). Recalling that, for any
symmetric tensor T ,

T (x) · ∇v(x) = TS(x) · ∇v(x) = T (x) · ∇Sv(x) , (35)

where TS and ∇Sv are the symmetric parts of T and ∇v, the internal power
reduces to

Pint(Π, v) =
∫

Π

T (x) · ∇Sv(x) dV . (36)
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The integral identity
Pext(Π, v) = Pint(Π, v) (37)

is the equation of virtual power.
The problems met in formulating balance equations for non-classical con-

tinua induced several authors to reverse the traditional approach described
in Subsection 1.1, by assuming the equation of virtual power as a postulate,
and deducing from it the balance equations.

This is the method of virtual power.11 In this method, the balance equa-
tions (1) are deduced using the Gauss-Green formula and the arbitrariness
of Π. Notice that, since the existence of the Cauchy stress is now assumed,
the relation s = Tn follows directly from the equation of virtual power,
without the use of the tetrahedron theorem.

For a classical continuum, this method is equivalent to the traditional
approach. Some problems arise for non-classical continua. Indeed, due to
the presence of supplementary internal actions, there are many possible ex-
pressions of the internal power from which Euler’s laws can be deduced.
Each of them produces its own extra balance equations for the supplemen-
tary actions. Therefore, a curious situation is created: a postulate, the
principle of virtual power, is required to be compatible with Euler’s balance
laws (1) but, at the same time, other balance laws are deduced from the
postulate itself. We will be back to this point.

1.5 The variational approach

The variational approach consists in deducing the equation of virtual power
from a minimum principle of an energy functional. For a classical continu-
um the energy is the sum of two terms, the strain energy and the energy
of the loads. The energy of the loads is the opposite of the external power
(32), and the strain energy is a function of the deformation u, depending
on the specific material which constitutes the body. For an elastic material
the strain energy has a volume density w, which is a function of the current
value of ∇u. The total energy has the form

E(u) =
∫

Ω

(
w(∇u(x))− b(x) · u(x)

)
dV −

∫
∂Ω

s(x) · u(x) dA .

Denoting by v a perturbation of u, the first variation of E is

δE(u, v) =
∫

Ω

(
∇w(∇u(x)) · ∇v(x)− b(x) · v(x)

)
dV −

∫
∂Ω

s(x) · v(x) dA .

11(Germain 1973a, 1973b).
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After setting
T (x) = ∇w(∇u(x)) ,

we see that the Euler-Lagrange equation δE(u, v) = 0 coincides with the
equation of virtual power (37).

Therefore, the variational approach is not substantially different from
the method of virtual power. The only difference is that the variational ap-
proach requires the specification of the functional dependence of the strain
energy on the deformation, that is, the choice of a specific material, since
the very beginning. In the method of virtual power this choice can be post-
poned, since the equation of virtual power is independent of the constitutive
equations.

For an elastic material, the stress is a function of the gradient of the
energy density. For other materials, for example, elastic-plastic, visco-
elastic, or visco-plastic materials, the total energy contains some dissipative
parts.12 In this case, the constitutive equations become more complicated.
For example, they may depend on the past history of the deformation or
on supplementary state variables. These subjects will not be treated in the
present Notes.

1.6 Bounded Cauchy fluxes

There is an alternative approach to classical continuum mechanics, which
emerged over the years from the work of several authors.13 This is the
approach based on the concept of Cauchy flux.14 Till now, this approach
did not receive adequate attention, and did not reach a fully satisfactory
settling.15

A Cauchy flux is a function Q from the interior surfaces of Ω into the
vectors, additive on disjoint surfaces belonging to the boundary of the same
subregion Π of Ω

S1,S2 ⊂ ∂Π , S1 ∩ S2 = ∅ ⇒ Q(S1 ∪ S2) = Q(S1) +Q(S2) . (38)

Here S1 and S2 are oriented surfaces, with the same orientation as the
natural orientation of ∂Π. A Cauchy flux is skew-symmetric if

Q(S
⇀

) = −Q(S
↼

) . (39)

12(Halphen & Nguyen 1975), (Mielke 2011).
13(Stippes 1971), (Noll 1973), (Gurtin & Martins 1976), (Ziemer 1983), (Šilhavý 1985,

1991).
14(Gurtin & Martins 1976).
15For some steps in this direction see (Del Piero 2009, 2013a).
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A skew-symmetric Cauchy flux has the additivity property

Q(∂(Π1 ∪Π2)) = Q(∂Π1) +Q(∂Π2) , (40)

for all regions Π1,Π2 of Ω with disjoint interiors. Indeed, let S1,S2 and S
be as in (14), with Π = Π1 ∪Π2, and with S1,S

⇀

oriented as ∂Π1 and S2,S
↼

oriented as ∂Π2. By (13) and (38),

Q(∂(Π1 ∪Π2)) = Q(S1) +Q(S2) ,

Q(∂Π1) = Q(S1) +Q(S⇀) , Q(∂Π2) = Q(S2) +Q(S↼) ,
(41)

and (40) follows from (39).
The restriction of Q to the boundaries ∂Π can be regarded as a function

F mapping the subregions Π into the vectors

F (Π) = −Q(∂Π) . (42)

By (40), F is additive on disjoint regions if and only ifQ is skew-symmetric.£Assume
that for every subregion Π of Ω there is a non-negative, scalar-valued func-
tion hΠ, integrable over ∂Π and such that

|Q(S) | ≤
∫
S
hΠ(x) dA , (43)

for every subsurface S of ∂Π. Moreover, assume that there is a non-negative,
scalar-valued function h, integrable over Ω and such that

|F (Π) | ≤
∫

Π

h(x) dV , (44)

for every subregion Π of Ω. Under these assumptions, it has been proved16

that Q has a surface density s( · , ∂Π)

Q(S) =
∫
S
s(x, ∂Π) dA , (45)

for every subsurface S of ∂Π, and F has a volume density f

F (Π) =
∫

Π

f(x) dV , (46)

for every subregion Π of Ω. By the definition (42), −f can be interpreted
as the volume density of Q.

16(Šilhavý 1985), Proposition 1 and Theorem 1.
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Condition (46) implies the additivity of F on disjoint subsets, that is,
the skew-symmetry of Q. A skew-symmetric Cauchy flux with surface and
volume densities will be called a bounded Cauchy flux. For fluxes of this
type, equation (42) takes the form∫

∂Π

s(x, ∂Π) dA+
∫

Π

f(x) dV = 0 . (47)

This equation has the same form of the equation (1)1 of balance of linear
momentum. But it is not a balance equation, since it does not express the
balance of any physical quantities. It is only a relation between the surface
and volume densities of Q. Due to its formal resemblance with a balance
equation, it will be called a pseudobalance equation.

Starting from this equation, the properties (3), (4) of the dependence
of s(x, ∂Π) on the normal and of the existence of the stress tensor can
be proved as done in Subsection 1.2, just by replacing b with f . Thus, a
distinctive property of the approach based on bounded Cauchy fluxes is that
the existence of the stress tensor is not a consequence of Euler’s law (1)1.

For a classical continuum, using the Gauss-Green formula, the external
power (32) can be transformed into the volume integral∫

Π

(
(b(x) + divT (x)) · v(x) + T (x) · ∇v(x)

)
dV ,

which, by the symmetry of T imposed by the rotational indifference require-
ment (34)2, reduces to ∫

Π

T (x) · ∇Sv(x) dV . (48)

This integral coincides with the internal power (36). Thus, the equation
of virtual power for a classical continuum coincides with the pseudobalance
equation for a bounded Cauchy flux. This leads to the identification of the
body force b with the volume density f .

To summarize, the alternative approach discussed in this Subsection is
based on two main assumptions:

(i) the system of contact actions is a bounded Cauchy flux,
(ii) the external power is indifferent.

These assumptions coincide with Newton’s three laws of motion plus some
extra regularity requirements. Indeed, as shown in Subsection 1.3, the first
two laws follow from the indifference of power, and the third law, or action-
reaction law, is a property of the skew-symmetric Cauchy fluxes.
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In the classical approach, the third law is a consequence of the first two.
In the present approach, the three laws are independent. Thus, for the
classical continuum the traditional approach seems to be more convenient.
As we shall see, this advantage disappears when dealing with non-classical
continua.

2 Non-classical continua

2.1 Continua with microstructure

A continuum with microstructure is a continuum in which the deformation
acts on two length scales of different order of magnitude, macroscopic and
microscopic.17 The displacement vector u describes the macroscopic de-
formation, while the microdeformation is described by a finite number of
order parameters, also called internal variables or state variables. They
can be scalars, vectors, or tensors, depending on the physical nature of the
microstructure.

With u is associated the system (b, s) of external actions of the classical
continuum, and with each dα are associated a body microforce βα and a
surface microtraction σα, of the same tensorial nature of dα. Denoting by
v and να the virtual variations of u and dα, the external power is defined by

Pext(Π, v, να) =
∫

Π

(
b · v + βα · να

)
dV +

∫
∂Π

(
s · v + σα · να

)
dA , (49)

where summation over repeated superscripts α is understood. For simplicity
of notation, from here onwards the reference to the argument x is omitted.

Models for continua with microstructure can be constructed by generali-
zing the approaches discussed in the previous sections for classical continua.
In the traditional approach, for each order parameter a microforce balance
equation of the same form of the pseudobalance equation (47) is assumed.18

The status of such equations is not completely clear. Indeed, due to their

17The literature on this subject is very large. The starting point was the theory of

elastic bodies with couple stresses of the Cosserats (1909), revived at the beginning

of the 1960’s in papers of (Grioli 1960), (Aero & Kuvshinskii 1960), (Toupin 1962),

(Mindlin & Tiersten 1962), and others. Straight after, the study of the more general

class of micropolar continua was started by (Mindlin 1964), (Eringen 1964), (Green

1965), and others. The surprising number of contributions produced at the end of the

decade is documented in the proceedings of the IUTAM Conference (Kröner 1968) and

in the lecture notes (Stojanović 1969). A history of successive developments and a

broad list of applications can be found in the book (Capriz 1989).
18(Capriz 1989).
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variable number and nature, they can hardly be consideed as general laws of
mechanics. Though I was not able to find any precise statement about the
nature of microforce balance equations, I believe it reasonable to consider
them as constitutive assumptions defining specific classes of continua.

In the approach based on the method of virtual power, a generalized
expression of the internal power is assumed.19 In this case, it is not clear how
much freedom is allowed in the choice of the expression of the internal power.
In most expressions proposed in the literature, the structural properties of a
continuum, dictated by the choice of the order parameters, are mixed with
constitutive assumptions, which, as explained below, are of a completely
different nature.

To generalize the approach introduced in Subsection 1.6, the basic as-
sumption is that each system σα of surface microtractions is the surface
density of a bounded Cauchy flux Qα. Then σα has the property (3) of the
dependence on the normal, and the linearity property

σα(x, n) = Σα(x)n ,

which may take the form (4), (30), or (31), depending on the tensorial
nature of the order parameter dα. Moreover, each Qα has a volume density
φα, for which the counterpart of the pseudobalance equation (47)∫

∂Π

σα(x, ∂Π) dA+
∫

Π

φα(x) dV = 0 , (50)

holds. From (47) and (50), the local forms

divT + f = 0 , divΣα + φα = 0 , (51)

can be deduced. Using the Gauss-Green formula, the external power trans-
forms into the volume integral

Pint(Π, v, να) =
∫

Π

(
(b− f) · v+T ·∇v+ (βα−φα) · να + Σα·∇να

)
dV, (52)

called the internal power. Equating to the external power (49), the equation
of virtual power

Pext(Π, v, να) = Pint(Π, v, να) (53)

is obtained. Just like equation (37) for classical continua, in the present
approach the equation of virtual power is in fact an identity, which holds
when all systems of contact actions are bounded Cauchy fluxes. Both terms

19(Germain 1973a; 1973b).
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of the identity are determined by the choice of the order parameters. We
say that this choice determines the structural properties of a continuum.

In the following, we will consider conditions for the indifference of the
internal power. Indeed, with the equation of virtual power reduced to an
identity, the external power is indifferent if and only if the internal power
is. In all examples discussed below, the internal power has the translational
indifference property

Pint(Π, c, 0) = 0 , (54)

whose consequence is the identification of the volume density f with the
body force b

f = b . (55)

In general, there is no identification of the volume densities φα with the
body microforces βα. Therefore, the internal forces20

ζα = βα − φα (56)

appear in (52). Then the internal power reduces to

Pint(Π, v, να) =
∫

Π

(
T · ∇v + ζα · να + Σα · ∇να

)
dV. (57)

This is the most general form of the internal power for a continuum with
microstructure. It consists of the products of the internal forces T, ζα,Σα

by the generalized deformations ∇v, να, ∇να. The nature of the virtual
velocities να determines the structural properties of the continuum. Equa-
tion (57) is independent of the constitutive equations, which are relations
between internal forces and generalized deformations, required to complete
the formulation of the problem of motion. The study of such relations is
out of the purposes of the present Notes.

Restrictions on the form of the internal power are expected to come
from the condition of rotational indifference. They take different forms for
different continua, depending on the physical nature of the order parameters.
Therefore, classes of continua are determined by the structural properties
and by the rotational indifference requirements. In particular, a classical
continuum is a continuum with no order parameters and with the rotational
indifference condition (34)2.

Non-classical continua may have a scalar, vectorial, or tensorial mi-
crostructure. In the following Subsections, some examples of each of these
classes of continua are briefly discussed.

20(Capriz 1989), Sect. 8.
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2.2 Continua with scalar microstructure

Let us give some examples of continua with scalar microstructure, taken
from the literature. All were constructed using the method of virtual power.

In the model for damage of Frémond & Nedjar (1996), damage is at-
tributed to microscopic motions which modify the macroscopic properties
of the material. At the macroscopic scale, the effects of the microscopic
motions are represented by a single scalar order parameter d, the intensity
of damage. The assumed expressions of the external and internal power are
the scalar versions of (49) and (57)

Pext(Π, v, ν) =
∫

Π

(
b · v + βν

)
dV +

∫
∂Π

(
s · v + σν

)
dA ,

Pint(Π, v, ν) =
∫

Π

(
T · ∇v + ζ ν + Σ · ∇ν

)
dV,

(58)

with ν the virtual variation of d, β the scalar body microforce, σ the scalar
surface microtraction, ζ the damage internal force, and Σ the damage flux
vector. Using the Gauss-Green formula, the internal power takes the form∫

Π

(
−divT · v + (ζ−divΣ) ν

)
dV +

∫
∂Π

(
Tn · v + (Σ · n) ν

)
dA ,

and equating to the external power, the balance equation (7) of linear mo-
mentum and the microforce balance equation

divΣ + β = ζ , (59)

are obtained, together with the relations

s = Tn , σ = Σ · n . (60)

A scalar microstructure is also assumed in the scalar theories of strain-
gradient plasticity.21 In it, the gradient ∇v is decomposed into the sum of
an elastic and a plastic part22

∇v = ∇ev +∇pv , (61)

and for the plastic part a single scalar measure ν is assumed, by setting

∇pv = ν Mp ,

21(Fleck & Hutchinson 2001), (Fleck & Willis 2009a), (Niordson & Hutchinson 2011).
22This decomposition originates from the multiplicative decomposition F = F eF p of the

deformation gradient, and holds for infinitesimal displacement gradients when, as done

here, the current configuration is taken as the reference configuration.
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with Mp a constant second-order tensor. The external power is as in (58)1,
while for the internal power the form

Pint(Π, v, ν) =
∫

Π

(
T · ∇ev + ζ#ν + Σ · ∇ν

)
dV

=
∫

Π

(
T · ∇v + (ζ# − T ·Mp) ν + Σ · ∇ν

)
dV

(62)

is assumed. This is a special case of (58)2, with ζ = ζ#− T ·Mp.
An example involving several scalar order parameters να is crystal plasti-

city.23 In it, the plastic strain rate is supposed to be a sum of dyads

∇pv = να eα⊗mα , (63)

where eα are slip directions, one for each of a finite number of planes with
unit normals mα, and να are virtual slip intensities, or virtual microshear
rates. The dyad eα⊗mα is the α-th Schmid tensor. The external power is
the scalar version of (49), and for the internal power the form

Pint(Π, v, να) =
∫

Π

(
T · ∇ev + ζα#να + Σα · ∇να

)
dV

=
∫

Π

(
T · ∇v + (ζα# − T · eα⊗mα) να + Σα · ∇να

)
dV

(64)

is assumed. This is also a special case of (58)2, with ζα= ζα#−T · eα⊗mα.
The scalar T · eα⊗ mα is the resolved shear stress. From the divergence
theorem, the balance equation (51)1 and the microforce balance equations

divΣα + βα = ζα#− T · eα⊗mα (65)

follow.

2.3 Continua with vectorial microstructure

In some vectorial microstructures, the order parameters dα are vectors re-
presenting material directions, for example, the orientation of the crystalline
lattice or the directions of crystal defects. If, as it often occurs, the dα are
supposed to be inextensible, they are called directors. The continua with a
microstructure defined by directors are called micropolar continua.24

For this type of continua we give a description based on bounded Cauchy
fluxes, starting from an external power of the form (49). The pseudobalance

23(Hill 1966), (Rice 1971), (Gurtin 2003b), (Gurtin et al. 2010) Sect. 105.
24(Eringen 1966). For a more recent review see (Pabst 2005).
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equations have the form (47) and (50), their local forms are as in (51), and
the internal power is as in (57), with ζα and να vectors and Σα second-order
tensors.25

Typical of micropolar continua is the form taken by rotational indif-
ference. Since the directors may change their orientation when the body
deforms, the external power is required to be invariant under simultaneous
rigid rotations of the body and of the directors

Pint(Π,Wx,Wdα) = 0 . (66)

Then, from (57),

0 =
∫

Π

(
T ·W + ζα ·Wdα + Σα ·W∇dα

)
dV

= W ·
∫

Π

(
T + ζα⊗ dα + Σα∇Tdα

)
dV ,

(67)

with ∇Tdα the transpose of ∇dα. From the arbitrariness of W and Π it
follows that the tensor T is not symmetric, and that its skew-symmetric
part is

TW = −(ζα⊗ dα+ Σα∇Tdα)W . (68)

Then the internal power reduces to

Pint(Π, v, να) =
∫

Π

(
T · ∇Sv − (ζα⊗ dα+ Σα∇Tdα)· ∇Wv

+ ζα · να + Σα · ∇να
)
dV

=
∫

Π

(
T · ∇Sv + ζα · (να −∇Wv dα)

+ Σα · (∇να−∇Wv ∇dα)
)
dV

=
∫

Π

(
T · ∇Sv + ζα · ψα + Σα ·Ψα

)
dV ,

(69)

where

∇Sv , ψα = να−∇Wv dα , Ψα = ∇να−∇Wv ∇dα , (70)

are the generalized deformations corresponding to the internal forces T, ζα,
and Σα, respectively. The vectors ψα are the relative rotations between the
directors dα and the corresponding directions in the deformed body.

25Following the traditional approach, in the model for nematic elastomers of (Anderson

et al. 1999) a microforce balance equation of the form (59), which the authors call

orientational momentum balance law, is assumed. In the Ericksen-Leslie theory of

nematic liquid crystals described in (Sonnet and Virga 2012), a similar equation is

deduced with a variational procedure, starting from an assumed expression of the

energy.
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Of interest is the special case in which the orientation of the directors
coincides with the orientation of the material elements

να = ∇v dα , ναi = vi,j d
α
j . (71)

That is, the positions of the atoms in the crystal lattice follow the macro-
scopic deformation. This is known as the Cauchy-Born hypothesis. In this
case, the generalized deformations ψα and Ψα take the form

ψα = ∇Sv dα , Ψα = ∇∇v dα +∇Sv∇dα , (72)

and the power (69) reduces to

Pint(Π, v) =
∫

Π

(
(T+ ζα⊗dα+Σα∇Tdα

)
·∇Sv+(Σα⊗dα) ·∇∇v

)
dV. (73)

The presence of the term ∇∇v characterizes the micropolar continua which
obey the Cauchy-Born hypothesis as second-gradient continua. These con-
tinua will be discussed in Subsection 2.5.

Also of interest are the Cosserat continua. They are continua in which
the vectors dα form an orthonormal triple, which preserves orthonormality
during the deformation. The virtual variations να are

να = Y dα , ναi = Yij d
α
j , (74)

where Y is a skew-symmetric tensorial field. In this case, the generalized
deformations become

ψα = (Y −∇Wv) dα , ψαi = (Y −∇Wv)ik dαk ,
Ψα= −dα∇Y + (Y −∇Wv)∇dα, Ψα

ik = Yij,kd
α
j + (Y −∇Wv)ij dαj,k .

(75)

The internal power (69) takes the form

Pint(Π, v, Y ) =
∫

Π

(
T · ∇Sv + (ζα⊗ dα+ Σα∇Tdα) · (Y −∇Wv)

−(dα⊗ Σα) · ∇Y
)
dV,

and, by the indifference condition (68), it further reduces to

Pint(Π, v, Y ) =
∫

Π

(
TS · ∇Sv− TW · (Y −∇Wv)− (dα⊗Σα) · ∇Y

)
dV. (76)

Thus, the internal forces appropriate to a Cosserat continuum are the sym-
metric and skew-symmetric parts TS , TW of T , plus the third-order tensor
dα⊗ Σα. Using the vectors associated with the skew-symmetric tensors

20



TW , Y and ∇Wv, the last two products in (76) can be reduced to the more
familiar products of moments (couple-stresses) by the corresponding rota-
tions.26

2.4 Continua with tensorial microstructure

An example of a continuum with a single tensorial order parameter is the
tensorial model for strain-gradient plasticity. For this model, the order pa-
rameter is the plastic strain tensor, and its variation is the plastic part ∇pv
of the decomposition (61) of the displacement gradient. In the traditional
approach followed in the literature,27 the external power is assumed to have
the form

Pext(Π, v,∇pv) =
∫

Π

(
b · v +B · ∇pv

)
dV +

∫
∂Π

(
s · v + S · ∇pv

)
dA ,

with B,S, and∇pv second-order tensors. In the approach based on bounded
Cauchy fluxes the pseudobalance equations (47) and (50) hold, with the
latter rewritten in the form∫

∂Π

S dA+
∫

Π

Φ dV = 0 .

From them follow the relations

s = Tn , S = Tn , (77)

with T a third-order tensor, and the local pseudobalance equations

divT + f = 0 , divT + Φ = 0 . (78)

From them, an internal power of the form

Pint(Π, v,∇pv) =
∫

Π

(
T · ∇v + (B − Φ) · ∇pv + T · ∇∇pv

)
dV , (79)

is deduced. The tensor ∇pv is invariant under changes of observer.28 Then
the rotational indifference condition

Pint(Π,Wx, 0) = 0 (80)

26(Aero & Kuvshinskii 1960), (Grioli 1960), (Mindlin & Tiersten 1962), (Toupin 1964).

For a detailed deduction see (Del Piero 2013a).
27(Rice 1971), (Fleck & Hutchinson 2001), (Gurtin 2003a), (Gudmundson 2004), (Fleck

& Willis 2009b).
28See e.g. (Gurtin et al. 2010), Sect. 91.5.
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requires the symmetry of T .
Equation (79) is the most general expression of the internal power for

continua with tensorial microstructure. Let us show a couple of examples
in which particular forms have been obtained by mixing structural pro-
perties and constitutive assumptions. In the model for small-deformation
viscoplasticity of (Gurtin 2003a), it is assumed that

Pint(Π, v,∇pv) =
∫

Π

(
T · ∇ev + T p · ∇pv + T · ∇∇pv

)
dV , (81)

with T p a second-order tensor, the microstress, and T a third-order tensor,
the polar microstress. From it, using the equation of virtual power, the
microforce balance equation

B + divT = T p − T (82)

is deduced. We observe that, by the decomposition (61) of ∇v and the
symmetry of T ,

Pint(Π, v,∇pv) =
∫

Π

(
T · ∇Sv + (T p − T ) · ∇pv + T · ∇∇pv

)
dV . (83)

This is the power (79), with T symmetric and with

B − Φ = T p − T . (84)

Then the microforce balance equation coincides with the pseudobalance
equation (78)2.

In (Gurtin 2003a), the supplementary assumption

Pint(Π, 0,W ) = 0 , (85)

called relaxational isotropy, is made to ensure the isotropy of the relaxed
configuration. This is an assumption of material symmetry, and not an
indifference requirement. When applied to the power (83), this condition
yields the symmetry of (T p − T ) and, therefore, of T p. For B = 0, the
symmetry of Φ follows from (84), and the symmetry of T with respect to
the first two subscripts

Tijk = Tjik
follows from (78)2. After decomposing ∇pv and ∇ev into the sum of their
symmetric and skew-symmetric parts

∇pv = Dp +W p , ∇ev = De +W e ,
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and observing that ∇Sv = Dp +De, we obtain

Pint(Π, v,Dp) =
∫

Π

(
T · (Dp+De) + (T p−T ) ·Dp + T · ∇Dp

)
dV

=
∫

Π

(
T ·De + T p ·Dp + T · ∇Dp

)
dV .

(86)

Thus, a consequence of assumption (85) is that the plastic spin W p and the
elastic spin W e do not contribute to the internal power.

This conclusion is not acceptable in general. Indeed, it has been reco-
gnized that the dissipation due to the plastic spin can be responsible of
appreciable size effects.29 A model including the dissipation due to the
plastic spin is given in (Gurtin 2004). In this model assumption (85) is
removed, and for the last product in (81) it is assumed that

T · ∇∇pv = T q · curl∇pv , Tijk∇pvij,k = T qhi ehkj∇
pvij,k , (87)

where T q is a second-order tensor and curl∇pv is a virtual variation of the
Burgers tensor. This is the same as to assume that

Tijk = ehkj T
q
hi , T qhi = 1

2 ehkjTijk , (88)

that is, that T is skew-symmetric with respect to the last two subscripts, and
that T q is the second-order tensor associated with T. With this assumption,
using again the equality ∇Sv = Dp +De and observing that

T · ∇pv = T ·Dp ,

by the symmetry of T , the internal power (83) reduces to

Pint(Π, v,∇pv) =
∫

Π

(
T · ∇Sv + (T p−T ) · ∇pv + T q · curl∇pv

)
dV

=
∫

Π

(
T ·De + T p · ∇pv + T q · curl∇pv

)
dV.

(89)

Moreover, by the identity

divT = −(curlT qT )T , Tijk,k = ehkjT
q
hi,k = −(curlT qT )ji ,

which follows from (88), the microforce balance equation (82) takes the form

B − curl (T qT )T = T p − T . (90)

29(Niordson & Hutchinson 2003), (Fleck & Willis 2009b), (Bardella 2010).
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2.5 Second-gradient continua

A second-gradient continuum is a particular continuum with tensorial mi-
crostructure, whose unique order parameter coincides with the gradient of
the macroscopic deformation u. Its virtual velocity is

ν = ∇v , (91)

and the external power is

Pext(Π, v) =
∫

Π

(
b · v +B · ∇v

)
dV +

∫
∂Π

(
s · v + S · ∇v

)
dA . (92)

This is a special case of the power (49), with the body microforce and
the surface microtraction given by the second-order tensors B and S, re-
spectively. From the representations (77) of s and S, the pseudobalance
equations (78) and the internal power

Pint(Π, v) =
∫

Π

(
(T +B − Φ) · ∇Sv + T · ∇∇v

)
dV (93)

follow. Note that ∇v has been replaced by ∇Sv, because the condition of
rotational indifference (80) here requires the symmetry of (T+B−Φ). Then
T is not symmetric in general, its skew-symmetric part is

TW = ΦW−BW ,

and the local balance (7) of the linear momentum reduces to30

divTS + div (ΦW−BW ) + b = 0 . (94)

For a continuum with vectorial microstructure obeying the Cauchy-Born
hypothesis (71), the external power has the form∫

Π

(
b · v + (βα⊗ dα) · ∇v

)
dV +

∫
∂Π

(
s · v + (σα⊗ dα) · ∇v

)
dA , (95)

with sum over the superscripts α. This is the power of a particular second-
gradient continuum, with

B = βα⊗ να, S = σα⊗ να.

The presence in (93) of a second-gradient term causes some problems in the
formulation of the boundary conditions for the problem of motion. Indeed,

30(Germain 1973a), Eqs. (35) and (36).
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the displacement gradient at the boundary has a normal and a tangential
component, and the tangential component is determined by the values of
v at the boundary. By consequence, boundary conditions of place can be
prescribed only to v and to the normal component of ∇v.

For a three-dimensional body Ω, to eliminate the tangential component
at the boundary take a local orthonormal reference frame ( eα, en), where
eα, α ∈ {1, 2} , are tangent vectors, and en is the exterior normal n to ∂Ω.
Consider the decomposition

S · ∇v = Sijvi,j = Sinvi,n+Siαvi,α = Sn · ∇nv + Seα · ∇αv . (96)

of the product S ·∇v into a normal and a tangential part. By the Gauss-
Green formula,∫
∂Ω

Seα·∇αv dA =
∫
∂Ω

Siαvi,α dA = −
∫
∂Ω

Siα,αvi dA = −
∫
∂Ω

divαS·v dA , (97)

and, therefore,∫
∂Ω

S · ∇v dA =
∫
∂Ω

(Sn · ∇nv − divαS · v) dA . (98)

The derivatives appearing in the operator (divα) are distributional deriva-
tives. That is, they may contain concentrated terms of the Dirac type. This
occurs at the edge lines, which are singular lines of the surface ∂Ω at which
the exterior normal and consequently the tangent plane, are discontinuous.
Indeed, forces per unit length, called edge forces, appear on these lines.31

But these forces are only apparent, because they are due to the represen-
tation of the power in a discontinuous local basis, and not to real forces
applied from the exterior.32 Indeed, equation (98) shows that edge forces
are present even for very regular surface microtractions S.

Some authors believe that the presence of edge forces requires a re-
formulation of the theorems of Noll and Cauchy proved in Subsection 1.2.
This seems not to be necessary, as long as the regularity assumed for the
Cauchy fluxes excludes singularities of the surface microtraction S. Indeed,

31Edge forces were considered in (Toupin 1962), (Mindlin 1964), (Germain 1973b). For

more recent developments see (Noll & Virga 1990), (Dell’Isola & Seppecher 1995),

(Degiovanni et al. 2006), (Podio-Guidugli & Vianello 2010).
32As stated in (Noll & Virga 1990), “edge interactions should not be confused with

external actions concentrated along curves”.
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in this case, the tensorial versions of Noll’s and Cauchy’s theorems leading
to the relations (31) hold.33

On the contrary, both more regular regions and generalized versions of
Noll’s and Cauchy’s theorems are required when the external actions include
forces distributed on lines or concentrated at isolated points.34 But, in spite
of the large literature on the subject, it seems that a complete theory of
higher-order continua in the presence of singular external forces has not yet
been formulated.
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Soc. Philomath. pp. 9-13. Also in: Œuvres, 2: 300-304

[Chen et al. 2009] G.Q. Chen, M. Torres, W.P. Ziemer. Gauss-Green theo-
rem for weakly differentiable vector fields, sets of finite perimeter, and
balance laws. Comm. Pure Appl. Math. 62: 242-304, 2009

[Cosserat 1909] E. and F. Cosserat. Théorie des corps déformables. Her-
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[Šilhavý 2008] M. Šilhavý. Cauchy’s stress theorem for stresses represented
by measures. Cont. Mech. Thermodynamics 20: 75-96, 2008

[Sonnet & Virga 2012] A.M. Sonnet, E.G. Virga. Dissipative Ordered Flu-
ids: Theories for Liquid Crystals. Springer, New York 2012

[Stippes 1971] M. Stippes. Flux functions and balance laws. J. of Elasticity
1: 175-177, 1971
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