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Objectives
The objectives of this presentation are two-fold:

• propose a systematic procedure to extend standard
elastoviscoplasticity models to include:

? size effects in the hardening behaviour of materials (grain size
effects...)

? regularization properties in the softening behaviour (strain
localization...)

• unify the “zoology” of generalized continuum models:

? “Classical” generalized continua: Cosserat, second gradient,
micromorphic media
(Mindlin, 1964; Eringen and Suhubi, 1964; Mindlin and Eshel,
1968)

? strain gradient plasticity, “implicit gradient approach”...
(Aifantis, 1987; Fleck and Hutchinson, 2001; Gurtin, 2003;
Engelen et al., 2003)

• establish links between generalized continuum mechanics and
phase field approaches
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State space

• observable and controllable variables (temperature,
strain...)

{T , ε∼}

• internal degrees of freedom (controllable variables that
account for some aspects of the microstructre)

{α, ∇α}

they have associated stresses and α or its associated force can
be prescribed at the boundary

• internal variables are the remembrance of internal degrees of
freedom; they cannot be controlled

{α}
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The micromorphic approach (1)

• Start from an initial classical elastoviscoplastic model with
internal variables

DOF0 = {u }, STATE0 = {F∼, T , α}
• Select one variable φ ∈ STATE0 and introduce the associated

micromorphic variable χφ as an additional degree of freedom
and, possibly, state variable:

DOF = {u , χφ}, STATE = {F∼, T , α, χφ, ∇ χφ}
• Extend the power of internal forces

P(i)(v ?,χφ̇?) = −
∫
D

p(i)(v ?,χφ̇?) dV

p(i)(v ?,χφ̇?) = σ∼ : ∇v ? + a χφ̇? + b .∇ χφ̇?

a,b generalized stresses, microforces (Gurtin, 1996)

• Derive additional balance equation and boundary conditions

div b − a = 0, ∀x ∈ Ω, b .n = ac ,∀x ∈ ∂Ω

The micromorphic approach to plasticity 7/31



The micromorphic approach (2)

• More generally, in the presence of volume generalized forces:

div (b−b e)−a+ae = 0, ∀x ∈ Ω, (b−b e).n = ac ,∀x ∈ ∂Ω

• Enhance the local balance of energy and the entropy inequality

ρε̇ = p(i) − div q + ρr , −ρ(ψ̇ + ηṪ ) + p(i) −
q

T
.∇T ≥ 0

• Consider the constitutive functionals:

ψ = ψ̂(F∼
e ,T , α,χφ,∇χφ), η = η̂(F∼

e ,T , α,χφ,∇χφ)

σ∼ = σ̂∼(F∼
e ,T , α,χφ,∇χφ)

a = â(F∼
e ,T , α,χφ,∇χφ), b = b̂ (F∼

e ,T , α,χφ,∇χφ)

• Derive the state laws (Coleman and Noll, 1963)

σ∼ = ρ
∂ψ̂

∂F∼
e .F∼

eT , η = − ∂ψ̂
∂T

, X = ρ
∂ψ̂

∂α
, a =

∂ψ̂

∂ χφ
, b =

∂ψ̂

∂∇ χφ

• Residual dissipation Dres = W p − X α̇−
q

T
.∇T ≥ 0
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The micromorphic approach (3)

• Take a simple quadratic potential

ψ(F∼,T , α,
χφ,∇χφ) = ψ1(F∼, α,T )+ψ2(e = φ− χφ,∇χφ,T )

ρψ2 =
1

2
Hχ(φ− χφ)2 +

1

2
A∇ χφ.∇ χφ

a = ρ
∂ψ

∂ χφ
= −Hχ(φ− χφ), b = ρ

∂ψ

∂∇ χφ
= A∇ χφ

• Simple form of the partial differential equation (homogeneous,
isothermal...)

a = div b =⇒ χφ− A

Hχ
∆ χφ = φ

Helmholtz equation with a minus sign and a source term

• Coupling modulus Hχ and characteristic length of the medium

l2c =
A

Hχ

Stability Hχ > 0, A > 0
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Micromorphic continuum
Micromorphic continuum according to (Eringen and Suhubi, 1964;
Mindlin, 1964)

• Select variable:
φ ≡ F∼,

χφ ≡ χ
∼

p(i) = σ∼ : ∇u̇ + a∼ : χ̇
∼

+ B
∼

...∇χ̇
∼

• application of the principle of (infinitesimal) material frame
indifference, (infinitesimal) change of observer of rate w∼ :

∇u̇ =⇒ ∇u̇ + w∼ , χ
∼

=⇒ χ
∼

+ w∼

=⇒ σ∼ + a∼ must be symmetric. Rewrite the virtual power:

p(i) = σ∼ : ε̇∼ + s∼ : (∇u̇ − χ̇
∼
) + S

∼

...∇χ̇
∼

• two balance equations:

div (σ∼ + s∼) + ρf = 0, div S
∼

+ s = 0
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Microstrain continuum
Microstrain continuum after (Forest and Sievert, 2006)

• Select

φ ≡ C∼ = F∼
T .F∼,

χφ ≡χC∼ , or φ ≡ ε∼,
χφ ≡χε∼

p(i) = σ∼ : ε̇∼ + a∼ :χε̇∼ + b
∼

... ∇χε∼
• Constitutive coupling between macro and microstrain via the

relative strain
e∼ := ε∼−

χε∼
ψ(ε∼

e , T , α, e∼ := ε∼−
χε∼, K

∼
:= ∇χε∼)

• Take a quadratic potential

a∼ = Hχe∼, b
∼

= A∇χε∼

• Extra–balance equation

χε∼− l2c ∆χε∼ = ε∼, with l2c =
A

Hχ

example: microfoams (Dillard et al., 2006)
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Cosserat continuum

Cosserat continuum
φ = R∼ ,

χφ ≡χR∼

p(i) = σ∼
s : ε̇∼− σ∼

a : ((∇u̇ )a − Ṙ∼ .R∼
T ) + M∼ : κ̇∼

The micromorphic approach to plasticity 13/31



Plan

1 The micromorphic approach to plasticity
Continuum thermomechanics
Full micromorphic and microstrain theories

2 Microstrain gradient plasticity
Gradient of plastic microstrain
Consistency condition
Anisothermal strain gradient plasticity

3 Internal constraint in the micromorphic approach

4 Microdiffusion and phase field approach



Plan

1 The micromorphic approach to plasticity
Continuum thermomechanics
Full micromorphic and microstrain theories

2 Microstrain gradient plasticity
Gradient of plastic microstrain
Consistency condition
Anisothermal strain gradient plasticity

3 Internal constraint in the micromorphic approach

4 Microdiffusion and phase field approach



General scalar microstrain gradient plasticity

• Classical and generalized plasticity

DOF0 = {u } STATE0 = {ε∼
e , p, α}

φ ≡ p, χφ ≡ χp

DOF = {u , χp} STATE = {ε∼
e , p, α, χp, ∇χp}

• Extra balance equation

p(i) = σ∼ : ε̇∼ + a χṗ + b .∇ χṗ, p(c) = t .u̇ + ac χṗ

div b − a = 0, ∀x ∈ Ω, b .n = ac , ∀x ∈ ∂Ω

• State laws
ε∼ = ε∼

e + ε∼
p

σ∼ = ρ
∂ψ

∂ε∼
e
, R = ρ

∂ψ

∂p
, X = ρ

∂ψ

∂α
, a = ρ

∂ψ

∂ χp
, b = ρ

∂ψ

∂∇ χp

• Evolution laws Dres = σ∼ : ε̇∼
p − Rṗ − X α̇ ≥ 0

ε̇∼
p = λ̇

∂f

∂σ∼
, ṗ = −λ̇ ∂f

∂R
, α̇ = −λ̇ ∂f

∂X
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Simplified scalar microstrain gradient plasticity

• Quadratic free energy potential

ρψ(ε∼
e , p, χp,∇χp) =

1

2
ε∼

e : Λ
≈

: ε∼
e+

1

2
Hp2+

1

2
Hχ(p−χp)2+

1

2
∇χp.A∼.∇

χp

• Constitutive equations

σ∼ = Λ
≈

: ε∼
e , a = −Hχ(p−χp), b = A∼ .∇

χp, R = (H+Hχ)p−Hχ
χp

• Substitution of constitutive equation into extra balance
equation

χp − 1

Hχ
div (A∼ .∇

χp) = p

• Homogeneous and isotropic materials A∼ = A1∼

χp − A

Hχ
∆ χp = p, b.c. ∇ χp.n = ac

same partial differential equation as in the implicit
gradient–enhanced elastoplasticity with ac = 0
(Engelen et al., 2003)
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Link to Aifantis strain gradient plasticity

• Yield function
f (σ∼ ,R) = σeq − σY − R

• Hardening law

R =
∂ψ

∂p
= (H + Hχ)p − Hχ

χp

• Under plastic loading

σeq = σY + H χp − A(1 +
H

Hχ
)∆ χp

compare with Aifantis model (Aifantis, 1987)

σeq = σY + R(p)− c2∆p

The equivalence is obtained for Hχ = ∞ (internal constraint):

χp ' p, A = c2
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Consistency condition

• Consistency condition

ḟ =
∂f

∂σ∼
: σ̇∼ + +

∂f

∂R
Ṙ

=
∂σeq

∂σ
: Λ
≈

: (ε̇∼− ε̇∼
p)− ∂R

∂p
ṗ − ∂R

∂ χp
χṗ = 0

• Plastic multiplier

ṗ =

N∼ : Λ
≈

: ε̇∼−
∂R

∂ χp
χṗ

N∼ : Λ
≈

: N∼ +
∂R

∂p

, with N∼ =
∂σeq

∂σ∼

where ε̇∼ and χṗ are controllable variable.

• Even though the yield condition can be written as a partial differential
equation, there is no need for a variational formulation of the consistency
condition contrary to (Mühlhaus and Aifantis, 1991; Liebe et al., 2001).
There is no need for a plastic front tracking technique. The plastic
microstrain χp and the generalized traction b .n are continuous across the
elastic/plastic domain.
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Thermal effects

• For temperature dependent parameters

a = div b = div (A∇ χp) = A∆ χp +
∂A

∂T
∇T .∇χp

χp − A

Hχ
∆ χp − 1

Hχ

∂A

∂T
∇T .∇ χp = p

• Consistency condition

ṗ =

N∼ : Λ
≈

: (ε̇∼− ε̇∼
th)− ∂R

∂ χp
χṗ − ∂R

∂T
Ṫ

N∼ : Λ
≈

: N∼ +
∂R

∂p
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Internal constraint and gradient of internal variable
approach

• Impose the internal constraint that
χφ ' φ =⇒ K ' ∇φ

Then, the generalized stress a becomes a Lagrange multiplier.

• Examples

? φ ≡ F∼ second gradient model (Mindlin, 1965)
? φ ≡ p Aifantis model (Aifantis, 1987; Fleck and Hutchinson, 2001)
? φ ≡ ε∼

p strain gradient plasticity (Forest and Sievert, 2003; Gurtin,
2003)

p(i) = σ∼ : ε̇∼
e + s∼ : ε̇∼

p + S
∼

... ε̇
∼

p, div S
∼

= s∼− σ∼
dev

The yield condition becomes a PDE (Aifantis, Fleck–Hutchinson, Gurtin):

σeq = σY + Hp − A∆p

What does the yield criterion become?

• What do the boundary conditions become?

? For the second gradient theory, intricate b.c. involving surface
curvature

? For gradient of plastic strain, S
∼
.n = m∼
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Microdiffusion (1)
Putting Geers’ approach of viscoplasticity and Cahn–Hilliard
diffusion within the micromorphic framework (Ubachs et al., 2004)

• Mass concentration and microconcentration

φ ≡ c , χφ ≡ χc , STATE = {c , χc , ∇ χc}
• Additional power due to microdiffusion (compare: there is no

power produced by classical diffusion!)

p(i) = a χċ + b .∇ χċ , a = div b , b .n = ac

in addition to the balance of mass:

ρċ = −div J

• First and second principles (isothermal for brevity)

ρε̇ = p(i),

∫
V
ρη̇ dV ≥

∫
V

µJ

T
dS

mass flux J and chemical potential µ

ρT η̇ − div (µJ ) ≥ 0; −ρψ̇ + p(i) − div (µJ ) ≥ 0
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Microdiffusion (2)

• State laws ρψ(c , χc , ∇ χc)

(a−ρ ∂ψ
∂ χc

)χċ+(b−ρ ∂ψ

∂∇ χc
).∇χċ+ρ(µ− ∂ψ

∂c
)ċ−J .∇µ ≥ 0

a = ρ
∂ψ

∂ χc
, b = ρ

∂ψ

∂∇ χc
, µ =

∂ψ

∂c

• Quadratic potential

ρψ = ρψ0(c) +
1

2
Hχ(c − χc)2 +

1

2
α∇ χc .∇ χc

a = −Hχ(c − χc) = div b = α∆ χc

χc − λ2∆ χc = c , λ2 =
α

Hχ

µ = ρ
∂ψ0

∂c
+ Hχ(c − χc)
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Relation to Cahn–Hilliard theory
• Mass concentration φ ≡ c, STATE = {c, ∇c}

p(i) = aċ + b .∇ċ, a = div b , b .n = ac

in addition to the balance of mass ρċ = −div J (Gurtin, 1996)

• First and second principles (isothermal for brevity) ρψ(c, ∇c)

ρε̇ = p(i), −ρψ̇ + p(i) − div (µJ ) ≥ 0

(a + µ− ρ
∂ψ

∂c
)ċ + (b − ρ

∂ψ

∂∇c
).∇ċ − J .∇µ ≥ 0

µ = ρ
∂ψ

∂c
− a, b = ρ

∂ψ

∂∇c
• Fick’s law J = −κ∇µ

• Quadratic potential ρψ = ρψ0(c) + 1
2
α∇c.∇c (Cahn and Hilliard, 1958)

µ = ρ
∂ψ

∂c
− a = ρ

∂ψ

∂c
− div b = ρ

∂ψ

∂c
− α∆c

ρċ = −div J = κ∆µ = κ∆(ρ
∂ψ

∂c
− α∆c)

• Equivalence obtained for χc ' c

ρċ = div ∇µ = κ∆(ρ
∂ψ0

∂c
+ Hχ(c − χc)) = κ∆(ρ

∂ψ0

∂c
− α∆ χc)
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Phase field approach (1)
The phase field model as presented by (Gurtin, 1996) falls in the
micromorphic approach. There are however two differences
compared to the previous examples: φ /∈ STATE0, there is a
dissipative part associated with φ̇

• Order parameter φ as additional degree of freedom in addition
to mass concentration; Gurtin assumes that there is a power
expenditure by variation of order parameter and its gradient
(in contrast to diffusion!)

STATE = {c , φ, ∇φ}, p(i) = aφ̇+ b .∇φ̇

• Balance of mass, generalized momentum (no volume forces)
and energy

ρċ = −div J , div b − a = 0, ρε̇ = p(i)

• Exploitation of second principle à la Coleman–Noll

p(i) − ρψ̇ − divµJ ≥ 0
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Phase field approach (2)

• Exploitation of the second principle (continued)

ρ(µ− ∂ψ

∂c
)ċ + (a− ρ

∂ψ

∂φ
)φ̇− (b − ρ

∂ψ

∂∇φ
).∇φ̇− J .∇µ ≥ 0

ρψ = ρψ0(c , φ) +
1

2
α∇φ.∇φ, µ =

∂ψ

∂c
=, b = ρ

∂ψ

∂∇φ

• Accept the dependence a(c , φ,∇φ, φ̇) adis = a− ρ∂ψ∂φ
and choose the dissipation potential

Ω(∇µ, adis) =
1

2
κ∇µ.∇µ+

1

2β
(adis)2

J = − ∂Ω

∂∇µ
= −κ∇µ, φ̇ =

∂Ω

∂adis
=

1

β
adis

• Ginzburg–Landau (Allen–Cahn) equation

βφ̇ = adis = a− ρ
∂ψ0

∂φ
= div b − ρ

∂ψ0

∂φ
= α∆φ− ρ

∂ψ0

∂φ

implemented in this way by Kais Ammar (2007)
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Conclusions
Why the name “micromorphic approach”?

• additional degrees of freedom, generally “strain–like”
variables, in the spirit of the full micromorphic continuum by
Mindlin and Eringen

• coupling of macro and micro–quantities through a dependence
of the free energy on a relative strain measure e = φ−χφ

• additional balance equations taking the form of a Helmholtz
equation with source term for a simple choice of the free
energy function

• constrained micromorphic media: strain gradient plasticity
and damage

• microdiffusion model that can be reduced to Cahn-Hilliard
model

• applications: finite element simulations of cell–size effects in
metallic foams, Cosserat crystal plasticity, micromorphic
crystal cleavage fracture...
(Forest et al., 2000; Dillard et al., 2006; Zeghadi et al., 2007)Microdiffusion and phase field approach 31/31
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