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Confined plasticity

[Ashby, 1970]

start animate end

periodic simple shear test:
classical solution

classical continuum crystal plasticity cannot account for lattice
curvature close to the interface (boundary layer effect)
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periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Confined plasticity

[Ashby, 1970]

start animate end

periodic shear test

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors

Shearing of a laminate for a strain gradient plasticity material 5/21



Laminate microstructure under shear
Unit cell of a periodic two–phase laminate ` = s + h

1

2

O

s h
Aifantis material in the white (soft) phase, purely elastic gray
(hard) phase

• Form of the solution for imposed mean shear γ̄

u1 = γ̄ x2, u2(x1) = u(x1), u3 = 0

unknown periodic functions u(x1), p(x1)

• Deformation gradient and strain

[∇u ] =

 0 γ̄ 0
u,1 0 0
0 0 0

 ,
[
ε∼
]

=

 0 1
2(γ̄ + u,1) 0

1
2(γ̄ + u,1) 0 0

0 0 0


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Resolution of the b.v.p.
Let us consider homogeneous isotropic elasticity and no hardening
in the plastic phase for simplicity

• Equilibrium: homogeneous shear stress σ12 throughout the laminate

• Displacement in the hard phase

σ12 = µ(γ̄ + uh
,1) =⇒ uh

,1 = C , uh = Cx1 + D

• Plastic strain in the soft phase

ε̇∼
p =

3

2
ṗ

s∼
J2(σ∼)

, ε̇∼
p =

√
3

2
ṗ(e 1 ⊗ e 2 + e 2 ⊗ e 1)

from the yield condition we get
√

3σ12 = R0 − cp,11 =⇒ p,111 = 0

so that the plastic strain is parabolic

p = α(x2
1 −

s2

4
)

• Continuity of plastic strain at the interface p(±s/2) = 0Shearing of a laminate for a strain gradient plasticity material 7/21
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Resolution of the b.v.p.

• Displacement in the soft phase

σ12 = µ(γ̄ + us
,1 −

√
3p) =⇒ us

,1 = C +
√

3p

us = (C − α
√

3
s2

4
)x1 + α

√
3

3
x3
1

Shearing of a laminate for a strain gradient plasticity material 8/21



Interface conditions

• Displacement continuity at x1 = ±s/2

us(
s

2
) = uh(

s

2
) =⇒ −

√
3α

s3

12
= D

• Displacement periodicity at x1 = −s/2 and x1 = s/2 + h

us(− s

2
) = uh(

s

2
+ h) =⇒

√
3α

s3

12
= C` + D

• Continuity of the stress vector at x1 = ±s/2

R0 − 2cα = µ
√

3(γ̄ + C )

• The wanted constants are deduced from the previous
equations

C =
R0 −

√
3µγ̄

√
3µ +

12cl√
3s3

, D = −C
`

2
, α = − 12√

3

D

s3
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Plastic strain profile in the channel

b1/lR0

u2/lγ̄
p/γ̄

x/l

0.60.40.20-0.2

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

µ (MPa) R0 (MPa) c (MPa.mm2) f ` (µm) γ̄

30000 20 0.005 0.7 10 0.01

• Characteristic length: `c =
√

c/µ = 0.4 µm, leading to
strong size effects in the micron range and below
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• The higher order stress b1 = 2cα experiences a jump at the
interface s = ±s/2:

b1(
s+

2
)− b1(

s−

2
) = 0− cαs, [[b1]](

s

2
) = −cαs

Shearing of a laminate for a strain gradient plasticity material 11/21



Overall size effect

• Macroscopic stress strain relation

σ12

µ
=

1

µfs2 + 4c

(√
3

3
fs2R0 + 4c γ̄

)
bilinear response depending explicitly on channel size s

• Macroscopic stress vs mean plastic strain;

p̄ =
1

`

∫ s/2

−s/2
p(x1) dx1 =⇒

√
3p̄ = f γ̄ − C (1− f )− f

σ12

µ

σ12 =
R0√

3
+

4
√

3c

f 3`2
p̄

microstructure–induced linear hardening depending on unit
cell size `

• Limit cases
? thick channels: size independent threshold σ12 = R0/

√
3

? thin films: scaling law σ12/p̄ ∼ 1/`2
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Plan

1 Shearing of a laminate for a strain gradient plasticity material

2 Shearing of a laminate for a micromorphic material



Laminate microstructure under shear
Unit cell of a periodic two–phase laminate ` = s + h

1

2

O

s h
Micromorphic material in the white (soft) phase, purely elastic
micromorphic gray (hard) phase

• Form of the solution for impose mean shear γ̄

u1 = γ̄ x2, u2(x1) = u(x1), u3 = 0

unknown periodic functions u(x1), p(x1), pχ(x1)

• Deformation gradient and strain

[∇u ] =

 0 γ̄ 0
u,1 0 0
0 0 0

 ,
[
ε∼
]

=

 0 1
2(γ̄ + u,1) 0

1
2(γ̄ + u,1) 0 0

0 0 0


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Resolution of the b.v.p.
Let us consider homogeneous isotropic elasticity, homogeneous Hχ

and no hardening in the plastic phase for simplicity

• The shear stress is uniform throughout the laminate and takes
the value

√
3σ12 = R0 + R = R0 + Hχ(p − pχ) = R0 − Apχ,11

• Derivation of the previous equations with respect to x1 shows
that pχ,111 = 0 which leads to the parabolic profile of the
micro–plastic deformation in the soft phase

pχ(x) = αx2 + β, ∀|x | ≤ s

2

Note that √
3σ12 = R0 − 2Aα

• The parabolic plastic strain profile follows

p = αx2 + β − 2A

Hχ
α

Shearing of a laminate for a micromorphic material 15/21



Resolution of the b.v.p.

A new feature of the model is that the microplastic strain pχ does
not vanish in general in the hard phase, whereas p does:

pχ −
Ah

Hχ
∆pχ = 0

ph
χ = αh coshωh(x −

l

2
),

s

2
≤ x ≤ s

2
+ h, with ω2

h =
Hχ

Ah

the ph
χ profile is of hyperbolic nature

Shearing of a laminate for a micromorphic material 16/21



Interface conditions

• Continuity of micro–plastic deformation at x = s/2:

α
s2

4
+ β = αh coshωh

h

2

• Continuity of the generalized stress component b1:

Aαs = −Ahαhωh sinhωh
h

2

Shearing of a laminate for a micromorphic material 17/21



Interface conditions
The displacement in the plastic and elastic phases can be expressed as

us = α
x3

√
3

+

„√
3β − γ̄ +

R0√
3µ
− 2Aα(

1√
3µ

+

√
3

Hχ
)

«
x

uh =

„
1√
3µ

(R0 − 2Aα)− γ̄

«
x + C

They are used to exploit two additional interface conditions

• Continuity of the displacement at x = s/2:
us(s/2) = uh(s/2)

α
s3

8
√

3µ
+
√

3(β − 2Aα

Hχ
)
s

2
= C

• Periodicity of the displacement component
us(−s/2) = uh(s/2 + h)

−(
σ12

µ
− γ̄)` +

√
3(β +

2Aα

Hχ
)
s

2
− α

s3

8
√

3
= C

Shearing of a laminate for a micromorphic material 18/21



Plastic strain profiles in the channel

b1/lR0

u2/lγ̄
p/γ̄

pχ/γ̄

x/l

0.60.40.20-0.2
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1
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Overall size effect

The scaling law results from the expression of the overall stress σ12

as a function of the mean plastic strain over the unit cell:

p̄ =
1

`

∫ s
2

− s
2

(αx2 + β − 2Aα

Hχ
) dx = βf

(
1− 1

L2

(
s2

12
− 2A

Hχ

))

with L2 =
s2

4
+

A

Ah

s

ωh
cotanh(ωh

h

2
) = −β

α
. The uniform stress

component can now be expressed as a function of the volume
fraction f of the soft phase and of the unit cell size l :

√
3σ12 = R0 +

2A

f

p̄

f 2`2

6
+

2A

Hχ
+

A

Ah

f `

ωh
cotanh (ωh

h

2
)

displaying a size–dependent overall linear hardening

Shearing of a laminate for a micromorphic material 20/21



Scaling laws
Two limit cases naturally arise

• Internal constraint Hχ →∞ for which the strain gradient
plasticity model is retrieved

• Unit cell size ` → 0 leads to saturation stress
√

3σ12 − R0 ∼ Hχ
1− f

f
p̄

micromorphic model
Aifantis model

l (mm)

σ 1
2
−

R
0/
√

3
(M

Pa
)

1010.10.010.0010.00011e-051e-06

1e+10

1e+08

1e+06

10000

100

1

0.01

0.0001

1e-06
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