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Confined plasticity
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periodic simple shear test:
classical solution

[Ashby, 1970]

classical continuum crystal plasticity cannot account for lattice
curvature close to the interface (boundary layer effect)
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[Ashby, 1970]

Role of continuity requirements at the interface: displacement,
lattice rotation, stress and generalized traction vectors
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Laminate microstructure under shear

Unit cell of a periodic two—phase laminate {=s+h

@) 1
S h

Aifantis material in the white (soft) phase, purely elastic gray
(hard) phase

e Form of the solution for imposed mean shear %

U =% x2, up(x1)=u(xy), u3=0

unknown periodic functions u(x1), p(x1)

Y

Shearing of a laminate for a strain gradient plasticity material 6/21



Laminate microstructure under shear
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Aifantis material in the white (soft) phase, purely elastic gray
(hard) phase

e Form of the solution for imposed mean shear %

U =% x2, up(x1)=u(xy), u3=0
unknown periodic functions u(x1), p(x1)

Y

e Deformation gradient and strain

0 5 0 0 (¥ +u1) 0
[Vul=1]us 0 0|, [g]=]| 3(3+u1) 0 0
0 00 0 0 0



Resolution of the b.v.p.

Let us consider homogeneous isotropic elasticity and no hardening
in the plastic phase for simplicity

® Equilibrium: homogeneous shear stress o1, throughout the laminate
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Resolution of the b.v.p.
Let us consider homogeneous isotropic elasticity and no hardening
in the plastic phase for simplicity
® Equilibrium: homogeneous shear stress o1, throughout the laminate

e Displacement in the hard phase

Ulzzu(’_eruf’l) = Ji=C, ' =Cxq+D

B

e Plastic strain in the soft phase

o 3. 8 V3
gp — Ep@’ gp = 7[)(@1 ®§2 +§2 ®g1)

from the yield condition we get
V3012 = Ry — cp11 = p111 =0

so that the plastic strain is parabolic
2
5 S
=a(xf — —
p (1 4 )

e Continuity of plastic strain at the interface p(£s/2) =0
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Resolution of the b.v.p.

e Displacement in the soft phase

012:/1(’7/+U,51—\/§p) = u751 = C+\/§p

2
vt =(C— a\@sz)xl +a\g§ 3
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Interface conditions

e Displacement continuity at x; = +5/2
3

s(2y = uh(2 V3 —
u(2)—u(2) = \/§a12 D
e Displacement periodicity at x; = —s/2 and x; =s5/2+ h
3
S(_5y— yh(2 >
w(=5)=u"(G+h) = fsau Ct+D

e Continuity of the stress vector at x; = £s/2
Ro — 2car = uv/3(7 + C)
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Interface conditions

e Displacement continuity at x; = +5/2
3
</ S h/S s
Z) = Z — — =D
w(3)=d"(3) = \/§a12
e Displacement periodicity at x; = —s/2 and x; =s/2+ h
3
S(_2y = yh(2 S
w(=5)=u"(G+h = \/§a12 Ct+D

Continuity of the stress vector at x; = £s/2

Ry — 2ca = uV/3(7 + C)

e The wanted constants are deduced from the previous
equations
R _ _
CZO—\/‘S’/”, D:_Ci a:_Eg
Van+ 12¢/ 2 V3s
V3s3
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Plastic strain profile in the channel

12 :
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e Characteristic length: ¢. = \/c/pu = 0.4 pm, leading to
strong size effects in the micron range and below
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Plastic strain profile in the channel
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e The higher order stress by = 2ca experiences a jump at the
interface s = +s/2:
+ —
bl(%) - bl(%) —0— cas, [[bl]](g) — —cas
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Overall size effect

e Macroscopic stress strain relation

012 1 (\/§

_ 2 =
T aRttac\ 3 P he *4”)

bilinear response depending explicitly on channel size s
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Overall size effect

e Macroscopic stress strain relation

012 1 (\/§

_ 2 =
T aRttac\ 3 P he *4”)

bilinear response depending explicitly on channel size s

e Macroscopic stress vs mean plastic strain;

s/2
,3:1// pa)da = V3p=fy- C(1—f)— 72
¢ —s/2 K
Ro 4\/§C_
012 = 3 + e P
microstructure—induced linear hardening depending on unit
cell size ¢

e Limit cases

* thick channels: size independent threshold o1 = Ry/v/3
x thin films: scaling law o15/p ~ 1/£?
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Laminate microstructure under shear

Unit cell of a periodic two—phase laminate {=s+h

O 1
S h

Micromorphic material in the white (soft) phase, purely elastic
micromorphic gray (hard) phase

e Form of the solution for impose mean shear 5
up =% x2, wx1)=u(x1), u3=0
unknown periodic functions u(xi), p(x1), py(x1)

e Deformation gradient and strain

0 5 0 0 13 +u1) 0
[Vul=1]us 0 0|, [g]=| 3(3+u1) 0 0
0 0 0 0 0 0
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Resolution of the b.v.p.

Let us consider homogeneous isotropic elasticity, homogeneous H,
and no hardening in the plastic phase for simplicity

e The shear stress is uniform throughout the laminate and takes
the value

V3012 =Ry + R =Ro+ Hy(p—py) = Ro — Apy.11

e Derivation of the previous equations with respect to x; shows
that py 111 = 0 which leads to the parabolic profile of the
micro—plastic deformation in the soft phase

polx) = ax?+ 0, Vx| <2
Note that
V3012 = Ry — 2Aa
e The parabolic plastic strain profile follows
2A
p:ozx2+/3—H—on
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Resolution of the b.v.p.

A new feature of the model is that the microplastic strain p, does
not vanish in general in the hard phase, whereas p does:

Ah
px_FXAPXZO
/ H
pgzahcoshwh(x—i), %Sxﬁ%—i—h, with w%:ﬁ

the pfé profile is of hyperbolic nature
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Interface conditions

e Continuity of micro—plastic deformation at x = s/2:

52

h
a + 3 = a, cosh Why

e Continuity of the generalized stress component b;:

h
Aas = —Ahahwh sinh whi
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Interface conditions

The displacement in the plastic and elastic phases can be expressed as

s X o R V3
v= ﬁ+(\/§‘d Cav i (m* X))

h (Ro — 2A0) — )x+c

( 1
u =

V3u
They are used to exploit two additional interface conditions

e Continuity of the displacement at x = s/2:

u*(s/2) = u(s/2)

2Aa s
8\@ +V3(8 - HX)QZC

e Periodicity of the displacement component

us(—s/2) = uh(s/2 + h)

012
(M T+ V3(6 +

2Ac . s s3

Hy )2 83
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Plastic strain profiles in the channel
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Overall size effect

The scaling law results from the expression of the overall stress 015
as a function of the mean plastic strain over the unit cell:

1 [, 2Ac 1 [/s2 2A

2

s2

A h
with [2 = 7 + IhwihCOtanh(whE) = —g. The uniform stress

component can now be expressed as a function of the volume
fraction f of the soft phase and of the unit cell size /:

2A B

3012 = Ro + =

Ve " f % + 24 + Aﬁcotanh (w ﬁ)
6  Hy, Apws "2

displaying a size-dependent overall linear hardening
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Scaling laws
Two limit cases naturally arise

e Internal constraint H, — oo for which the strain gradient
plasticity model is retrieved

e Unit cell size ¢ — 0 leads to saturation stress

1-f
\/§O'12*R0NHX D

P
et ————p 7 T T

f

———
[ _ Aifantismodel —— |
micromorphic model ----- i

1e+08

1e+06

10000

100

012 — Ro/V/3 (MPa)

1

0.01

0.0001

1e-06 L Ll Ll Ll Ll Ll Ll L
1606  1e05 00001 0001 0.01 01 1 10
| (mm)
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