
Simple glide problem for the Cosserat continuum

We study the problem of an infinite plate, of height H, fixed at the bottom and with prescribed
microrotation or couple-stress vector at the top, as shown on figure 1. We assume plane strain
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Fig. 1 – Simple glide problem for the Cosserat continuum.

conditions : u3 = 0 and that
Φ1 = Φ2 = 0, and a displacement field and rotation field of the form :

u =

 u(y)
0
0

 and Φ =

 0
0

Φ(y)


The deformations associated with the kinematic fields defined above write :

e∼ = ∇∼ u + ε
∼
.Φ =

 0 u′ + Φ 0
−Φ 0 0
0 0 0


and

κ∼ = Φ ⊗∇ =

 0 0 0
0 0 0
0 Φ′ 0


1 Linear elastic case

The elastic constitutive equations allow us to obtain the expression of the fields σ∼ and M∼ :

σ∼ =

 0 µu′ + µc(u
′ + 2Φ) 0

µu′ − µc(u
′ + 2Φ) 0 0

0 0 0


and

M∼ =

 0 0 0
0 0 (β − γ)Φ′

0 (β + γ)Φ′ 0


In general, we assume that the coefficients β and γ are equal so that µ23 = 0 and µ32 = 2βΦ′.

This hypothesis allows us to fulfill the plane strain conditions. On the other hand, we notice on
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these expressions the non-symmetry of the strain and stress tensors. The equilibrium equations
write : {

div σ∼ + f = 0

div M∼ + 2
×
σ + c = 0

with
×
σ =

 0
0

−µc(u
′ + 2Φ)


with : {

σ12,2 = 0

µ32,2 + 2
×
σ3 = 0 σ12 = µu′ + µc(u

′ + 2Φ) = Cst = σ0

2βΦ′′ − 2µc(u
′ + 2Φ) = 0

u′ =
σ0 − 2µcΦ

µ + µc

β(µ + µc)Φ
′′ − 2µµcΦ = µcσ0

The particular solution of the differential equation in Φ is Φ1 = −σ0

2µ
.

The solution of the homogeneous system is : Φ2 = A ey/lc + B e−y/lc with
1

l c
=

√
2µµc

β(µ + µc)
.

We notice that lc has the dimension of a length. It is the characteristic length of th problem.
The general solution for the kinematic fields u and Φ is :

Φ = Φ1 + Φ2 = −σ0

2µ
+ A ey/lc + B e−y/lc

u =
σ0

µ
y − 2µclc

(µ + µc)
(A ey/lc −B e−y/lc) + C

The constants obtained after integrating the equilibrium equations are determined from the
boundary conditions. We note that, whatever the boundary conditions are, the solution has
a hyperbolic form, which differs completely from the classical case of single slip where the
deformations are homogeneous and the displacements are linear in y. We consider the case
where we impose a microrotation Φ0 at the upper surface, which is free from force stresses. The
boundary conditions are then :

• lower surface : u = Φ = 0

• upper surface :

∥∥∥∥∥∥
Φ = Φ0

e 1 . σ∼ . e 2 = σ12 = 0
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Hence 

σ12(H) = 0 ⇒ σ0 = 0

Φ(0) = 0 ⇒ A + B = 0

Φ(H) = Φ0 ⇒ A eH/lc + B e−H/lc = Φ0

u(0) = 0 ⇒ − 2µclc
(µ + µc)

(A−B) + C = 0

The analytical solution for the elastic problem with imposed microrotation is written

Φ(y) = Φ0
sinh(y/lc)

sinh(H/lc)

u(y) =
2µclcΦ0

(µ + µc)sinh(H/lc)
(1− cosh(y/lc))

The solution shows that a boundary layer of size characterized by lc exists at the top of the
strip. This solution can be used to test numerical implementation of the Cosserat model.

The profiles of microrotation are drawn on figure 1 for the following values of the material
parameters : µ = 30000 MPa, β = 500 MPa.mm2, µc = 100000 MPa, lc/H ' 0.1.

Limit cases can be worked out for the constrained Cosserat continuum (couple stress theory)
when µc →∞ [Koiter, 1963, Nowacki, 1986], and when the characteristic length lc goes to zero,
for which the Cauchy continuum is retrieved. The displacement vanishes in the latter case since
the Cauchy continuum is not sensitive to an applied microrotation.

2 Elastoplastic case at small deformations

2.1 Constitutive equations

The first trials for an extension of classical von Mises elastoplasticity to the Cosserat conti-
nuum are due to [Sawczuk, 1967], [Lippmann, 1969], [Besdo, 1974], [Mühlhaus and Vardoulakis, 1987]
and [Borst, 1991, Borst, 1993]. They belong to the class of single criterion plasticity models.
The following form of the extended von Mises criterion was proposed :

f(σ∼ , M∼ , R) = J2(σ∼ , M∼ ) − R(p) (1)

J2(σ∼ , M∼ ) =
√

aσ∼
′ : σ∼

′ + bM∼ : M∼ (2)

where σ∼
′ is the deviatoric part of σ∼ , a, b are material parameters. The flow rules and plastic

multiplier then read :

ė∼
p = ṗ

a σ∼
′

J2(σ∼ , M∼ )
, κ̇∼

p = ṗ
b M∼

J2(σ∼ , M∼ )
(3)

ṗ =

√
1

a
ė∼

p : ė∼
p +

1

b
κ̇∼

p : κ̇∼
p (4)

The use of the consistency condition ḟ = 0 under plastic loading yields the following expression
of the plastic multiplier :

ṗ =
N∼ : E

≈
: ė∼ + N∼ c

: C
≈

: κ̇∼

H + N∼ : E
≈

: N∼ + N∼ c
: C
≈

: N∼ c

(5)
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Fig. 2 – Simple glide test for a Cosserat infinite layer : elastic and elastoplastic domains, boundary
conditions.

This expression involves the normal tensors N∼ and N∼ c
to the yield surface, the hardening

modulus H and the tensors of elastic moduli E
≈

and C
≈

for linear elasticity (for a material

admitting at least point symmetry) :

N∼ =
∂f

∂σ∼
, N∼ c

=
∂f

∂M∼
, H =

∂R

∂p
, E

≈
=

∂2Ψ

∂e∼
e ∂e∼

e
, C

≈
=

∂2Ψ

∂κ∼
e ∂κ∼

e
(6)

The condition of plastic loading for the material point is that the numerator of equation (5) is
positive, provided that the denominator remains positive, which still allows softening behaviour
(H < 0).

2.2 Solution for the generalized von Mises model

It is important to see the respective role of Cosserat characteristic lengths appearing in the
elastic and plastic constitutive equations in some simple situations. Analytical solutions for
an isotropic elastic-ideally plastic Cosserat material involving one or two yield functions can
be worked out in the case of the Cosserat glide. The considered boundary value problem is
depicted on figures 2. The detailed solutions are provided below. Two characteristic lengths
can be defined :

le =

√
β

µ
, lp =

√
a

b
(7)

(see equation (9) for the definition of isotropic Cosserat elastic bending modulus β). In the glide
test, the material can be divided into elastic and plastic zones (figures 2). Characteristic length
le explicitely appears in the solution in the elastic zone, whereas the solution in the plastic zone
is driven by length lp. Classical solutions are retrieved for vanishing le and lp.

The use of a single coupled yield criterion (2) leads to non–homogeneous distribution of force
and couple stress in the plastic zone, as can be seen from figure 3.

A two–dimensional layer of Cosserat material with infinite extension in direction 1 and height
h is considered on figure 2. The unknowns of the problem are u = [u(x2), 0, 0]T and Φ =

[0, 0, Φ(x2)]
T . Various types of boundary conditions are possible. For example, we consider :

u(0) = 0, Φ(0) = 0, t = σ12e 1 = 0, m = µ32 e 3 = µ0
32e 3 (8)
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Note that the solution of this problem for the classical Cauchy continuum would be a vanishing
u. The material exhibits an elastoplastic behaviour with a generalized von Mises yield function
(2). Let us recall the elasticity relations in the isotropic case :

σ∼ = λ(trace e∼
e)1∼ + 2µe∼

es + 2µce∼
ea, M∼ = α(trace κ∼

e)1∼ + 2βκ∼
es + 2γκ∼

ea (9)

where λ, µ are the Lamé constants and µc, α, β, γ are additional moduli. One usually takes
β = γ at least in the two–dimensional case [Borst, 1991]. An elastic Cosserat characteristic

length le =
√

β/µ can be defined. Under the prescribed boundary conditions, a plastic zone
develops starting from the top.

Elastic zone, 0 ≤ x2 ≤ α

The combination of elasticity law and balance equations leads to the following equations :

σ12 = (µ + µc)u,2 + 2µcΦ, σ21 = (µ− µc)u,2 − 2µcΦ, M32 = 2βΦ,2 (10)

σ12,2 = 0, M32,2 + σ21 − σ12 = 0 (11)

from which two differential equations are deduced :

Φ,22 = ω2
eΦ, u,2 = − 2µc

µ + µc

Φ, ωe =

√
2µµc

β(µ + µc)
(12)

Taking the boundary conditions at the bottom into account, the solutions follow, including an
integration constant B to be determined :

Φ(x2) = B sinh(ωex2), u(x) =
2µcB

ωe(µ + µc)
(1− cosh(ωex2)) (13)

M32 = 2Bβωe cosh(ωex2), σ21 = − 4µµc

µ + µc

B sinh(ωex2) (14)

Plastic zone, α ≤ x2 ≤ h

In the generalized von Mises criteria (2), the simplifying assumption
a1 = a, a2 = 0, b1 = b, b2 = 0 is adopted, together with a constant threshold R = R0. The yield
criterion (2) requires :

aσ2
21 + bM2

32 = R2
0 (15)

Combining this condition with balance equations (11), the solution takes the following form
including integration constants C and D :

M32 = C cos(ωpx2) + D sin(ωpx2), σ21 = ωp(C sin(ωpx2)−D cos(ωpx2)) (16)

ωp =
1

lp
=

√
b

a
(17)

where a charateristic length lp comes into play. The constants C and D are solutions of the
following system of equations :

C2 + D2 =
R2

0

b
, C cos(ωph) + D sin(ωph) = M0

32 (18)
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Fig. 3 – Simple glide test for a single criterion von Mises elastoplastic Cosserat infinite layer : force
stress and couple stress profiles along a vertical line. A micro–rotation Φ = 0.001 is prescribed at the
top h = 5lu. The material parameters are : E = 200000 MPa, ν = 0.3, µc=100000 MPa, β=76923
MPa.l2u, R0=100MPa, a1 = 1.5, a2 = 0, b1 = 1.5l−2

u , b2 = 0. The micro–couple prescribed at the top is
M0

32 = 80MPa.lu. lu is a length unit.

The continuity of surface couple vector and yield condition at x2 = α provides the system of
equations for the unknowns B and α :

2βωeB cosh(ωeα) = C cos(ωpα) + D sin(ωpα) (19)

16a

(
µµc

µ + µc

)2

B2 sinh2(ωeα) + 4bβ2ω2
eB

2 cosh2(ωeα) = R2
0 (20)

The numerical resolution of both systems of equations leads to a semi–analytical solution of the
simple glide test, that can be used as test for the implementation of Cosserat elastoplasticity
in a Finite Element code. This has been checked for the simulation presented on figure 3.
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