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Introduction
Boundary conditions in second gradient or higher order theories

It is commonly accepted in continuum mechanics that mechanical interactions are due to surface contact forces.
These interactions forces being represented by the stress tensor σ (Cauchy theorem).
When dealing with equilibrium of elastic media, this description can easily be recovered through variational considerations.
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Introduction
Boundary conditions in second gradient or higher order theories

It is commonly accepted in continuum mechanics that mechanical interactions are due to surface contact forces.
These interactions forces being represented by the stress tensor σ (Cauchy theorem).
When dealing with equilibrium of elastic media, this description can easily be recovered through variational considerations.

Consider for instance a very simple elastic material with elastic energy

Ẽ(u) =
∫
Ω
(A∇u) ·∇u

submitted to some volume forces f and surface boundary forces F .
The equilibrium displacement u minimizes Ẽ(u)−

∫
Ω f ·u−

∫
∂Ω F ·u.

Setting σ = 2A∇u, the variational formulation reads

∀v ,
∫
Ω

σ ·∇v −
∫
Ω

f · v −
∫

∂Ω
F · v = 0

leading (through an integration by parts) to the PDE formulation

div(σ)+ f = 0 onΩ, σ ·n−F = 0 on ∂Ω

The last condition being replaced by its dual one u = 0 on any part of the boundary wherever the displacement is imposed.
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Boundary conditions in second gradient or higher order theories
When considering elastic material with energy density depending of second or higher gradient of the displacement field it is not true that
mechanical interactions reduce to surface forces.
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When considering elastic material with energy density depending of second or higher gradient of the displacement field it is not true that
mechanical interactions reduce to surface forces.
Consider for instance a second gradient material with elastic energy

Ẽ(u) =
∫
Ω

A∇∇u ·∇∇u

submitted to some volume forces f and surface boundary forces F .
Setting σ = 2A∇∇u (a third order tensor) the variational formulation reads

∀v ,
∫
Ω

σ ·∇∇v −
∫
Ω

f · v −
∫

∂Ω
F · v = 0

or through two successive integration by parts

∀v ,
∫
Ω
(div(div(σ))− f) · v+

∫
∂Ω

(σ ·n) ·∇v − (div(σ) ·n+F) · v = 0
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Ω

σ ·∇∇v −
∫
Ω

f · v −
∫

∂Ω
F · v = 0

or through two successive integration by parts

∀v ,
∫
Ω
(div(div(σ))− f) · v+

∫
∂Ω

(σ ·n) ·∇v − (div(σ) ·n+F) · v = 0

On the boundary, ∇v and v are not independent : the tangent part of the gradient must be eliminated by a new integration by parts. In
case of a smooth boundary (edges and wedges are interesting but not considered here) we get

∀v ,
∫
Ω
(div(div(σ))− f) · v+

∫
∂Ω

((σ ·n) ·n) ·
∂v

∂n
− (divs(σ ·n)//+div(σ) ·n+F) · v = 0
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case of a smooth boundary (edges and wedges are interesting but not considered here) we get

∀v ,
∫
Ω
(div(div(σ))− f) · v+

∫
∂Ω

((σ ·n) ·n) ·
∂v

∂n
− (divs(σ ·n)//+div(σ) ·n+F) · v = 0

Leading to the PDE formulation

div(div(σ))− f = 0 onΩ, −divs(σ ·n)//−div(σ) ·n = F on∂Ω, (σ ·n) ·n = 0 on ∂Ω
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Boundary conditions in second gradient or higher order theories

Remarks:

One of the boundary conditions, −divs(σ ·n)//−div(σ) ·n = F is replaced by its dual one u = 0 on any part of the boundary
wherever the displacement is imposed.
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The other condition (σ ·n) ·n = 0 remains and has to be interpretated from the mechanical point of view.

Its dual consists in fixing ∂u
∂n on the boundary.

It may become non homogenous if adding in the energy the external action
∫
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Boundary conditions in second gradient or higher order theories

Remarks:

One of the boundary conditions, −divs(σ ·n)//−div(σ) ·n = F is replaced by its dual one u = 0 on any part of the boundary
wherever the displacement is imposed.

The other condition (σ ·n) ·n = 0 remains and has to be interpretated from the mechanical point of view.

Its dual consists in fixing ∂u
∂n on the boundary.

It may become non homogenous if adding in the energy the external action
∫

∂ΩG · ∂u
∂n : then we get −(σ ·n) ·n= G .

The tangent part of G can be interpreted as a surface density of torques. The normal part is more exotic.

For higher order materials, more new types of interaction appear.

Discrete systems leading to higher order continua may provide a better understanding
of these new mechanical interactions
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The flexion beam

Let us begin with a very simple reticulated structure : a beam.

We assume that all bars are linear elastic bars (a spring-like behaviour) (or correspond to long range interactions)

No buckling is considered.

External forces can be exerted only on blue nodes. Red nodes are “internal”.
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The flexion beam

When fixing an supplementary node, the truss becomes isostatic. At equilibrium it minimizes its potential energy.

F
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The flexion beam

When fixing an supplementary node, the truss becomes isostatic. At equilibrium it minimizes its potential energy.

F

Let us compute the elastic energy of the truss.
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The flexion beam
Computation of equilibrium is easier for a slightly different structure:

F

Remark :
Crossing can be avoided by using a
3D structure

or by adding a internal node at the
junction and tuning the stiffnesses
of the different bars

We set x = (x1 ,x2).

We denote u[i] = (u1[i],u2[i]) the displacement of (blue) node i (i ∈ {1, . . .N}.
Computation is straightforward if we moreover assume a very high (infinite) stiffness for the horizontal bars. Then ∀i, u1[i] = 0.
The elastic energy contained in the structure depends only on the transverse displacement u2 .

In a part i−1 i+1i it reduces to k(u2[i −1]−2u2[i]+u2 [i +1])2

Thus the potential elastic energy of the truss reads

E(u) =
N−1

∑
i=2

k(u2[i −1]−2u2[i]+u2 [i +1])2
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The flexion beam
We recognize in u2[i −1]−2u2[i]+u2[i +1] the finite difference approximation of the second derivative of u2 with respect to x1 .
With a suitable scaling for k, the continuous limit (N → ∞) model reads

Ẽ(u) =
∫ ℓ

0
K

(

∂2u2

∂x2
1

)2
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The flexion beam
We recognize in u2[i −1]−2u2[i]+u2[i +1] the finite difference approximation of the second derivative of u2 with respect to x1 .
With a suitable scaling for k, the continuous limit (N → ∞) model reads

Ẽ(u) =
∫ ℓ

0
K

(

∂2u2

∂x2
1

)2

The equilibrium under the action of a single force F at end point x1 = ℓ minimizes

inf
u

{

Ẽ(u)−Fu2(ℓ) : u1 = 0; u2(0) = 0;
∂u2

∂x1
(0) = 0

}

Hence u2 satisfies the 4th order differential equation
(

Ku′′2
)′′

= 0 with the four boundary conditions : fixed displacement u2(0) = 0,

applied force (Ku′′2 )
′(ℓ) = F , fixed rotation u′2(0) = 0 and applied (null) torque (Ku′′2 )(ℓ) = 0. Force and torque are dual to

displacement and rotation.
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∂u2

∂x1
(0) = 0

}

Hence u2 satisfies the 4th order differential equation
(

Ku′′2
)′′

= 0 with the four boundary conditions : fixed displacement u2(0) = 0,

applied force (Ku′′2 )
′(ℓ) = F , fixed rotation u′2(0) = 0 and applied (null) torque (Ku′′2 )(ℓ) = 0. Force and torque are dual to

displacement and rotation.

The solution for the transverse displacement is polynomial : u2(x1) =
−F
6Kℓ (x

3
1 −3ℓx2

1 ).

F
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The flexion truss

Consider many parallel beams,
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The flexion truss
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The flexion truss

Have we simply designed a degenerated material with a vanishing shear stiffness ?

*
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The flexion truss

Have we simply designed a degenerated material with a vanishing shear stiffness ?

No : the space of floppy modes is one-dimensional.

Consequence : fixing the shear in one part of the domain tends to fix it everywhere.

*
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The flexion truss

Have we simply designed a degenerated material with a vanishing shear stiffness ?

No : the space of floppy modes is one-dimensional.

Consequence : fixing the shear in one part of the domain tends to fix it everywhere.

Using alternative beam structures and linking blue nodes only, makes the computation easier. We get the elastic energy

E(u) =
M

∑
j=1

N−1

∑
i=2

k(u2[i −1, j]−2u2[i, j]+u2[i +1, j])2 +
M−1

∑
j=1

N

∑
i=1

c(u2[i, j]−u2[i, j −1])2

where u[i, j] denotes the displacement of the i-th (blue) node of the j-th beam. *
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The flexion truss

Have we simply designed a degenerated material with a vanishing shear stiffness ?

No : the space of floppy modes is one-dimensional.

Consequence : fixing the shear in one part of the domain tends to fix it everywhere.

Using alternative beam structures and linking blue nodes only, makes the computation easier. We get the elastic energy

E(u) =
M

∑
j=1

N−1

∑
i=2

k(u2[i −1, j]−2u2[i, j]+u2[i +1, j])2 +
M−1

∑
j=1

N

∑
i=1

c(u2[i, j]−u2[i, j −1])2

where u[i, j] denotes the displacement of the i-th (blue) node of the j-th beam. *

This gives the continuum model (recalling that u1 = 0)

Ẽ(u) =
∫
Ω

K

(

∂2u2

∂x2
1

)2

+C

(

∂u2

∂x2

)2
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The flexion truss

In order to understand the model, let us consider an example of equilibrium :

N
o 

de
fo

rm
at

io
n

A surface force is exerted on the middle surface. Solution for a classical elastic medium.
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The flexion truss
Effect of the extra boundary condition.

For our truss the solution depends on the extra boundary condition:
- applying a vanishing density of torques G = 0 at x1 = 0 gives no solution : the floppy mode is activated.
- applying a non-vanishing density of torques at x1 = 0, by imposing the dual condition ∂u2/∂x1 = 0, gives a solution.

No torque. No rotation.
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The flexion truss

co
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 s
he

ar
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The pantographic beam

Now we build a structure based on the following basic element,

We assume that the bars linking blue and red nodes have very high (infinite) stiffness corresponding to pure flexion (no extension) for the scissors.
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The pantographic beam

Now we build a structure based on the following basic element, which has the same behaviour as scissors

We assume that the bars linking blue and red nodes have very high (infinite) stiffness corresponding to pure flexion (no extension) for the scissors.

Linking many such cells we get the pantographic structure:

which has an extensional flopping mode (in addition to the rotation).
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The pantographic beam
Remarks :
Fixing the deformation of the first cell tends to fix the deformation of all cells.
When fixing the two first (blue) nodes the structure becomes isostatic.

Computing its elastic energy in terms of the displacement of the (blue) nodes is straightforward. We get

E(u) =
N−1

∑
i=2

k(u2 [i −1]−2u2[i]+u2[i +1])2 + k ′(u1[i −1]−2u1[i]+u1[i +1])2

We now recognize in u1[i −1]−2u1[i]+u1[i +1] the finite difference approximation of the second derivative of u1 with respect to x1 .
With a suitable scaling for k and k ′ , the continuous limit (N → ∞) model reads

Ẽ(u) =
∫ ℓ

0
K

(

∂2u2

∂x2
1

)2

+K ′

(

∂2u1

∂x2
1

)2
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Fixing the deformation of the first cell tends to fix the deformation of all cells.
When fixing the two first (blue) nodes the structure becomes isostatic.

Computing its elastic energy in terms of the displacement of the (blue) nodes is straightforward. We get

E(u) =
N−1

∑
i=2

k(u2 [i −1]−2u2[i]+u2[i +1])2 + k ′(u1[i −1]−2u1[i]+u1[i +1])2

We now recognize in u1[i −1]−2u1[i]+u1[i +1] the finite difference approximation of the second derivative of u1 with respect to x1 .
With a suitable scaling for k and k ′ , the continuous limit (N → ∞) model reads

Ẽ(u) =
∫ ℓ

0
K

(

∂2u2

∂x2
1

)2

+K ′

(

∂2u1

∂x2
1

)2

The equilibrium under the action of a single axial force F at end point x1 = ℓ minimizes infu1

{

Ẽ(u)−Fu1(ℓ) :; u1(0) = 0;
∂u1
∂x1

(0) = 0
}

Everything can be transposed from the study of the flexion beam to the new beam by replacing the transverse displacement u2 by the axial one

u1 . But the mechanical interpretation is completely different. The action G =−(σ ·n) ·n corresponds now to a “double force” ( or )
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The pantographic truss

Consider many parallel pantographic beams,
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The pantographic truss
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The pantographic truss

The elastic energy of the structure is the sum of the energies of all pantotographic beams:

E(u) =
M

∑
j=1

N−1

∑
i=2

k(u1[i −1, j]−2u1[i, j]+u1[i +1, j])2 + k ′(u2[i −1, j]−2u2[i, j]+u2[i +1, j])2

+
M−1

∑
j=2

N

∑
i=1

k(u1[i, j −1]−2u1[i, j]+u1[i, j +1])2 + k ′(u2[i, j −1]−2u2[i, j]+u2[i, j +1])2
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∫
Ω

K
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∂x2
1
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(
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∂x2
2

)2

+K

(
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∂x2
1

)2

+K ′
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∂x2
2
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∫
Ω

K

(
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(
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2
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∂2u1

∂x2
1
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The floppy modes are of the form u(x1 ,x2) = (ax1x2 +bx1 + cx2 +d,ex1x2 + fx1 +gx2 +h) which, with a Dirichlet condition u = 0 on the
boundary x1 = 0, reduce to

u(x1 ,x2) = ((ax2 +b)x1 , (ex2 + f)x1).
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The floppy modes are of the form u(x1 ,x2) = (ax1x2 +bx1 + cx2 +d,ex1x2 + fx1 +gx2 +h) which, with a Dirichlet condition u = 0 on the
boundary x1 = 0, reduce to

u(x1 ,x2) = ((ax2 +b)x1 , (ex2 + f)x1).

One can still act on the material at the fixed surface x1 = 0 by

- applying a density G of torques (or fixing the “rotation
∂u2
∂x1

)

- applying a density G of “double-forces” (or fixing the “dilatation
∂u1
∂x1

)
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The pantographic truss
An example of equilibrium

Constant dilatation
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The 3rd gradient beam

We first suppress the flexion stiffness of the pantographic structure by considering:

In order to simplify the following drawings, we symbolize it by the triple line

Its energy is E(u) = ∑N−1
i=2 k ′(u1[i −1]−2u1[i]+u1[i +1])2 and in the continuous limit Ẽ(u) =

∫ ℓ
0 K ′

(

∂2u1
∂x2

1

)2

.

Then we construct the Warren-type beam (where the upper line is the structure we just described and the other bars are non extensible)
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.

Then we construct the Warren-type beam (where the upper line is the structure we just described and the other bars are non extensible)

Deformations with constant curvature are the only floppy modes.
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Deformations with constant curvature are the only floppy modes.
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The 3rd gradient beam

We first suppress the flexion stiffness of the pantographic structure by considering:

In order to simplify the following drawings, we symbolize it by the triple line

Its energy is E(u) = ∑N−1
i=2 k ′(u1[i −1]−2u1[i]+u1[i +1])2 and in the continuous limit Ẽ(u) =

∫ ℓ
0 K ′

(

∂2u1
∂x2

1

)2

.

Then we construct the Warren-type beam (where the upper line is the structure we just described and the other bars are non extensible)

Deformations with constant curvature are the only floppy modes.

One can act on it by a “triple force” ( ).
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The 3rd gradient beam

The beam is non extensible : u1 = 0.
Its energy (in terms of the transverse displacement of the blue nodes) reads

E(u) =
N−2

∑
i=2

k(−u2[i −1]+3u2[i]−3u2[i +1]+u2[i +2])2

and, in the continuous limit,

Ẽ(u) =
∫
Ω

K

(

∂3u2

∂x3
1

)2
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The 3rd gradient truss

Consider many parallel 3rd gradient beams,
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The 3rd gradient truss

Consider many parallel 3rd gradient beams,
link them with bars, you get a truss with one floppy mode.
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The 3rd gradient truss

Consider many parallel 3rd gradient beams,
link them with bars, you get a truss with one floppy mode.
Its energy reads

E(u) =
M

∑
j=1

N−2

∑
i=2

k(−u2[i −1, j]+3u2[i, j]−3u2[i +1, j]+u2[i +2, j])2 +
M−1

∑
j=1

N

∑
i=1

c(u2 [i, j]−u2[i, j +1])2
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In the continuous limit, we get

Ẽ(u) =
∫
Ω

K

(

∂3u2

∂x3
1

)2

+C

(

∂u2

∂x2

)2
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In the continuous limit, we get

Ẽ(u) =
∫
Ω

K

(

∂3u2

∂x3
1

)2

+C

(

∂u2

∂x2

)2

Example of equilibrium :

constant curvature
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Conclusion

Boundary conditions for second and higher gradient material are not
classical.
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Conclusion

Boundary conditions for second and higher gradient material are not
classical.

They describe real mechanical actions which, in the continuoum
mechanics framework, cannot be interpretated as density of forces nor
torques.

Discrete systems which have the desired continuous limit give a
miscroscopic interpretation for these actions.

In elasticity, discrete systems can lead to very rich behaviors.

These behaviors can also be recovered through homogenization
procedures. But obtaining them explicitely is a challenge.
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