Linear elastic trusses leading to continua with exotic mechanical interactions.

P. Seppecher (IMATH Toulon)

CMDS February 2011
(9) Introduction
(2) The flexion beam
(3) The flexion truss
(4) The pantographic beam
(5) The pantographic truss

6 The 3rd gradient beam
(7) The 3rd gradient truss
(8) Conclusion

Introduction

Boundary conditions in second gradient or higher order theories

- It is commonly accepted in continuum mechanics that mechanical interactions are due to surface contact forces.

These interactions forces being represented by the stress tensor σ (Cauchy theorem).
When dealing with equilibrium of elastic media, this description can easily be recovered through variational considerations.

Introduction

Boundary conditions in second gradient or higher order theories

- It is commonly accepted in continuum mechanics that mechanical interactions are due to surface contact forces.

These interactions forces being represented by the stress tensor σ (Cauchy theorem).
When dealing with equilibrium of elastic media, this description can easily be recovered through variational considerations.

- Consider for instance a very simple elastic material with elastic energy

$$
\tilde{E}(u)=\int_{\Omega}(A \nabla u) \cdot \nabla u
$$

submitted to some volume forces f and surface boundary forces F.
The equilibrium displacement u minimizes $\tilde{E}(u)-\int_{\Omega} f \cdot u-\int_{\partial \Omega} F \cdot u$.
Setting $\sigma=2 A \nabla u$, the variational formulation reads

$$
\forall v, \int_{\Omega} \sigma \cdot \nabla v-\int_{\Omega} f \cdot v-\int_{\partial \Omega} F \cdot v=0
$$

leading (through an integration by parts) to the PDE formulation

$$
\operatorname{div}(\sigma)+f=0 \text { on } \Omega, \quad \sigma \cdot n-F=0 \text { on } \partial \Omega
$$

The last condition being replaced by its dual one $u=0$ on any part of the boundary wherever the displacement is imposed.

Boundary conditions in second gradient or higher order theories

- When considering elastic material with energy density depending of second or higher gradient of the displacement field it is not true that mechanical interactions reduce to surface forces.

Boundary conditions in second gradient or higher order theories

- When considering elastic material with energy density depending of second or higher gradient of the displacement field it is not true that mechanical interactions reduce to surface forces.
Consider for instance a second gradient material with elastic energy

$$
\tilde{E}(u)=\int_{\Omega} A \nabla \nabla u \cdot \nabla \nabla u
$$

submitted to some volume forces f and surface boundary forces F.

Boundary conditions in second gradient or higher order theories

- When considering elastic material with energy density depending of second or higher gradient of the displacement field it is not true that mechanical interactions reduce to surface forces.
Consider for instance a second gradient material with elastic energy

$$
\tilde{E}(u)=\int_{\Omega} A \nabla \nabla u \cdot \nabla \nabla u
$$

submitted to some volume forces f and surface boundary forces F.
Setting $\sigma=2 A \nabla \nabla u$ (a third order tensor) the variational formulation reads

$$
\forall v, \int_{\Omega} \sigma \cdot \nabla \nabla v-\int_{\Omega} f \cdot v-\int_{\partial \Omega} F \cdot v=0
$$

or through two successive integration by parts

$$
\forall v, \int_{\Omega}(\operatorname{div}(\operatorname{div}(\sigma))-f) \cdot v+\int_{\partial \Omega}(\sigma \cdot n) \cdot \nabla v-(\operatorname{div}(\sigma) \cdot n+F) \cdot v=0
$$

Boundary conditions in second gradient or higher order theories

- When considering elastic material with energy density depending of second or higher gradient of the displacement field it is not true that mechanical interactions reduce to surface forces.
Consider for instance a second gradient material with elastic energy

$$
\tilde{E}(u)=\int_{\Omega} A \nabla \nabla u \cdot \nabla \nabla u
$$

submitted to some volume forces f and surface boundary forces F.
Setting $\sigma=2 A \nabla \nabla u$ (a third order tensor) the variational formulation reads

$$
\forall v, \int_{\Omega} \sigma \cdot \nabla \nabla v-\int_{\Omega} f \cdot v-\int_{\partial \Omega} F \cdot v=0
$$

or through two successive integration by parts

$$
\forall v, \int_{\Omega}(\operatorname{div}(\operatorname{div}(\sigma))-f) \cdot v+\int_{\partial \Omega}(\sigma \cdot n) \cdot \nabla v-(\operatorname{div}(\sigma) \cdot n+F) \cdot v=0
$$

On the boundary, ∇v and v are not independent : the tangent part of the gradient must be eliminated by a new integration by parts. In case of a smooth boundary (edges and wedges are interesting but not considered here) we get

$$
\forall v, \int_{\Omega}(\operatorname{div}(\operatorname{div}(\sigma))-f) \cdot v+\int_{\partial \Omega}((\sigma \cdot n) \cdot n) \cdot \frac{\partial v}{\partial n}-\left(\operatorname{div}^{s}(\sigma \cdot n) / /+\operatorname{div}(\sigma) \cdot n+F\right) \cdot v=0
$$

Boundary conditions in second gradient or higher order theories

- When considering elastic material with energy density depending of second or higher gradient of the displacement field it is not true that mechanical interactions reduce to surface forces.
Consider for instance a second gradient material with elastic energy

$$
\tilde{E}(u)=\int_{\Omega} A \nabla \nabla u \cdot \nabla \nabla u
$$

submitted to some volume forces f and surface boundary forces F.
Setting $\sigma=2 A \nabla \nabla u$ (a third order tensor) the variational formulation reads

$$
\forall v, \int_{\Omega} \sigma \cdot \nabla \nabla v-\int_{\Omega} f \cdot v-\int_{\partial \Omega} F \cdot v=0
$$

or through two successive integration by parts

$$
\forall v, \int_{\Omega}(\operatorname{div}(\operatorname{div}(\sigma))-f) \cdot v+\int_{\partial \Omega}(\sigma \cdot n) \cdot \nabla v-(\operatorname{div}(\sigma) \cdot n+F) \cdot v=0
$$

On the boundary, ∇v and v are not independent : the tangent part of the gradient must be eliminated by a new integration by parts. In case of a smooth boundary (edges and wedges are interesting but not considered here) we get

$$
\forall v, \int_{\Omega}(\operatorname{div}(\operatorname{div}(\sigma))-f) \cdot v+\int_{\partial \Omega}((\sigma \cdot n) \cdot n) \cdot \frac{\partial v}{\partial n}-\left(\operatorname{div}^{s}(\sigma \cdot n) / /+\operatorname{div}(\sigma) \cdot n+F\right) \cdot v=0
$$

Leading to the PDE formulation

$$
\operatorname{div}(\operatorname{div}(\sigma))-f=0 \text { on } \Omega, \quad-\operatorname{div}^{s}(\sigma \cdot n)_{/ /}-\operatorname{div}(\sigma) \cdot n=F \text { on } \partial \Omega, \quad(\sigma \cdot n) \cdot n=0 \text { on } \partial \Omega
$$

Boundary conditions in second gradient or higher order theories

Remarks:

O One of the boundary conditions, $-\operatorname{div}^{s}(\sigma \cdot n)_{/ /}-\operatorname{div}(\sigma) \cdot n=F$ is replaced by its dual one $u=0$ on any part of the boundary wherever the displacement is imposed.

Boundary conditions in second gradient or higher order theories

Remarks:

One of the boundary conditions, $-\operatorname{div}^{s}(\sigma \cdot n)_{/ /}-\operatorname{div}(\sigma) \cdot n=F$ is replaced by its dual one $u=0$ on any part of the boundary wherever the displacement is imposed.

- The other condition $(\sigma \cdot n) \cdot n=0$ remains and has to be interpretated from the mechanical point of view.

Boundary conditions in second gradient or higher order theories

Remarks:

One of the boundary conditions, $-\operatorname{div}^{s}(\sigma \cdot n)_{/ /}-\operatorname{div}(\sigma) \cdot n=F$ is replaced by its dual one $u=0$ on any part of the boundary wherever the displacement is imposed.

- The other condition $(\sigma \cdot n) \cdot n=0$ remains and has to be interpretated from the mechanical point of view.
- Its dual consists in fixing $\frac{\partial u}{\partial n}$ on the boundary.

Boundary conditions in second gradient or higher order theories

Remarks:

O One of the boundary conditions, $-\operatorname{div}^{s}(\sigma \cdot n)_{/ /}-\operatorname{div}(\sigma) \cdot n=F$ is replaced by its dual one $u=0$ on any part of the boundary wherever the displacement is imposed.

The other condition $(\sigma \cdot n) \cdot n=0$ remains and has to be interpretated from the mechanical point of view.

- Its dual consists in fixing $\frac{\partial u}{\partial n}$ on the boundary.
- It may become non homogenous if adding in the energy the external action $\int_{\partial \Omega} \mathcal{G} \cdot \frac{\partial u}{\partial n}$: then we get $-(\sigma \cdot n) \cdot n=\mathcal{G}$.

Boundary conditions in second gradient or higher order theories

Remarks:

O One of the boundary conditions, $-\operatorname{div}^{s}(\sigma \cdot n)_{/ /}-\operatorname{div}(\sigma) \cdot n=F$ is replaced by its dual one $u=0$ on any part of the boundary wherever the displacement is imposed.

The other condition $(\sigma \cdot n) \cdot n=0$ remains and has to be interpretated from the mechanical point of view.

- Its dual consists in fixing $\frac{\partial u}{\partial n}$ on the boundary.
- It may become non homogenous if adding in the energy the external action $\int_{\partial \Omega} \mathcal{G} \cdot \frac{\partial u}{\partial n}$: then we get $-(\sigma \cdot n) \cdot n=\mathcal{G}$.
- The tangent part of \mathcal{G} can be interpreted as a surface density of torques. The normal part is more exotic.

Boundary conditions in second gradient or higher order theories

Remarks:

O One of the boundary conditions, $-\operatorname{div}^{s}(\sigma \cdot n)_{/ /}-\operatorname{div}(\sigma) \cdot n=F$ is replaced by its dual one $u=0$ on any part of the boundary wherever the displacement is imposed.

- The other condition $(\sigma \cdot n) \cdot n=0$ remains and has to be interpretated from the mechanical point of view.
- Its dual consists in fixing $\frac{\partial u}{\partial n}$ on the boundary.
- It may become non homogenous if adding in the energy the external action $\int_{\partial \Omega} \mathcal{G} \cdot \frac{\partial u}{\partial n}$: then we get $-(\sigma \cdot n) \cdot n=\mathcal{G}$.
- The tangent part of \mathcal{G} can be interpreted as a surface density of torques. The normal part is more exotic.
- For higher order materials, more new types of interaction appear.

Discrete systems leading to higher order continua may provide a better understanding of these new mechanical interactions

The flexion beam

Let us begin with a very simple reticulated structure : a beam.

- We assume that all bars are linear elastic bars (a spring-like behaviour) (or correspond to long range interactions)
- No buckling is considered.
- External forces can be exerted only on blue nodes. Red nodes are "internal".

The flexion beam

Let us begin with a very simple reticulated structure : a beam.

O We assume that all bars are linear elastic bars (a spring-like behaviour) (or correspond to long range interactions)

- No buckling is considered.
- External forces can be exerted only on blue nodes. Red nodes are "internal".
- This truss has one floppy mode, the rotation $u(x)=A \cdot x$ with a constant skew symmmetric matrix A.

The flexion beam

Let us begin with a very simple reticulated structure : a beam.

O We assume that all bars are linear elastic bars (a spring-like behaviour) (or correspond to long range interactions)

- No buckling is considered.
- External forces can be exerted only on blue nodes. Red nodes are "internal".
- This truss has one floppy mode, the rotation $u(x)=A \cdot x$ with a constant skew symmmetric matrix A.

The flexion beam

Let us begin with a very simple reticulated structure : a beam.

O We assume that all bars are linear elastic bars (a spring-like behaviour) (or correspond to long range interactions)

- No buckling is considered.
- External forces can be exerted only on blue nodes. Red nodes are "internal".
- This truss has one floppy mode, the rotation $u(x)=A \cdot x$ with a constant skew symmmetric matrix A.

The flexion beam

Let us begin with a very simple reticulated structure : a beam.

O We assume that all bars are linear elastic bars (a spring-like behaviour) (or correspond to long range interactions)

- No buckling is considered.
- External forces can be exerted only on blue nodes. Red nodes are "internal".
- This truss has one floppy mode, the rotation $u(x)=A \cdot x$ with a constant skew symmmetric matrix A.

The flexion beam

Let us begin with a very simple reticulated structure : a beam.

- We assume that all bars are linear elastic bars (a spring-like behaviour) (or correspond to long range interactions)
- No buckling is considered.
- External forces can be exerted only on blue nodes. Red nodes are "internal".
- This truss has one floppy mode, the rotation $u(x)=A \cdot x$ with a constant skew symmmetric matrix A.

The flexion beam

Let us begin with a very simple reticulated structure : a beam.

O We assume that all bars are linear elastic bars (a spring-like behaviour) (or correspond to long range interactions)

- No buckling is considered.
- External forces can be exerted only on blue nodes. Red nodes are "internal".
- This truss has one floppy mode, the rotation $u(x)=A \cdot x$ with a constant skew symmmetric matrix A.

The flexion beam

When fixing an supplementary node, the truss becomes isostatic. At equilibrium it minimizes its potential energy.

The flexion beam

When fixing an supplementary node, the truss becomes isostatic. At equilibrium it minimizes its potential energy.

The flexion beam

Computation of equilibrium is easier for a slightly different structure:

We set $x=\left(x_{1}, x_{2}\right)$.
We denote $u[i]=\left(u_{1}[i], u_{2}[i]\right)$ the displacement of (blue) node $i(i \in\{1, \ldots N\}$.
Computation is straightforward if we moreover assume a very high (infinite) stiffness for the horizontal bars. Then $\forall i, u_{1}[i]=0$.
The elastic energy contained in the structure depends only on the transverse displacement u_{2}.

Thus the potential elastic energy of the truss reads

$$
E(u)=\sum_{i=2}^{N-1} k\left(u_{2}[i-1]-2 u_{2}[i]+u_{2}[i+1]\right)^{2}
$$

The flexion beam

- We recognize in $u_{2}[i-1]-2 u_{2}[i]+u_{2}[i+1]$ the finite difference approximation of the second derivative of u_{2} with respect to x_{1}. With a suitable scaling for k, the continuous limit $(N \rightarrow \infty)$ model reads

$$
\tilde{E}(u)=\int_{0}^{\ell} K\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)^{2}
$$

The flexion beam

- We recognize in $u_{2}[i-1]-2 u_{2}[i]+u_{2}[i+1]$ the finite difference approximation of the second derivative of u_{2} with respect to x_{1}. With a suitable scaling for k, the continuous limit $(N \rightarrow \infty)$ model reads

$$
\tilde{E}(u)=\int_{0}^{\ell} K\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)^{2}
$$

- The equilibrium under the action of a single force F at end point $x_{1}=\ell$ minimizes

$$
\inf _{u}\left\{\tilde{E}(u)-F u_{2}(\ell): u_{1}=0 ; u_{2}(0)=0 ; \frac{\partial u_{2}}{\partial x_{1}}(0)=0\right\}
$$

Hence u_{2} satisfies the 4 th order differential equation $\left(K u_{2}^{\prime \prime}\right)^{\prime \prime}=0$ with the four boundary conditions : fixed displacement $u_{2}(0)=0$, applied force $\left(K u_{2}^{\prime \prime}\right)^{\prime}(\ell)=F$, fixed rotation $u_{2}^{\prime}(0)=0$ and applied (null) torque $\left(K u_{2}^{\prime \prime}\right)(\ell)=0$. Force and torque are dual to displacement and rotation.

The flexion beam

- We recognize in $u_{2}[i-1]-2 u_{2}[i]+u_{2}[i+1]$ the finite difference approximation of the second derivative of u_{2} with respect to x_{1}. With a suitable scaling for k, the continuous limit $(N \rightarrow \infty)$ model reads

$$
\tilde{E}(u)=\int_{0}^{\ell} K\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)^{2}
$$

- The equilibrium under the action of a single force F at end point $x_{1}=\ell$ minimizes

$$
\inf _{u}\left\{\tilde{E}(u)-F u_{2}(\ell): u_{1}=0 ; u_{2}(0)=0 ; \frac{\partial u_{2}}{\partial x_{1}}(0)=0\right\}
$$

Hence u_{2} satisfies the 4 th order differential equation $\left(K u_{2}^{\prime \prime}\right)^{\prime \prime}=0$ with the four boundary conditions : fixed displacement $u_{2}(0)=0$, applied force $\left(K u_{2}^{\prime \prime}\right)^{\prime}(\ell)=F$, fixed rotation $u_{2}^{\prime}(0)=0$ and applied (null) torque $\left(K u_{2}^{\prime \prime}\right)(\ell)=0$. Force and torque are dual to displacement and rotation.

- The solution for the transverse displacement is polynomial : $u_{2}\left(x_{1}\right)=\frac{-F}{6 K \ell}\left(x_{1}^{3}-3 \ell x_{1}^{2}\right)$.

The flexion truss

Consider many parallel beams,

The flexion truss

Consider many parallel beams, link them,

The flexion truss

Consider many parallel beams, link them, you get a truss with one floppy mode.

The flexion truss

Consider many parallel beams, link them, you get a truss with one floppy mode.

The flexion truss

Consider many parallel beams, link them, you get a truss with one floppy mode.

The flexion truss

Consider many parallel beams, link them, you get a truss with one floppy mode.

Consider many parallel beams, link them, you get a truss with one floppy mode.

The flexion truss

Have we simply designed a degenerated material with a vanishing shear stiffness ?

The flexion truss

Have we simply designed a degenerated material with a vanishing shear stiffness ?
No : the space of floppy modes is one-dimensional.
Consequence : fixing the shear in one part of the domain tends to fix it everywhere.

The flexion truss

Have we simply designed a degenerated material with a vanishing shear stiffness ?
No : the space of floppy modes is one-dimensional.
Consequence : fixing the shear in one part of the domain tends to fix it everywhere.
Using alternative beam structures and linking blue nodes only, makes the computation easier. We get the elastic energy

$$
E(u)=\sum_{j=1}^{M} \sum_{i=2}^{N-1} k\left(u_{2}[i-1, j]-2 u_{2}[i, j]+u_{2}[i+1, j]\right)^{2}+\sum_{j=1}^{M-1} \sum_{i=1}^{N} c\left(u_{2}[i, j]-u_{2}[i, j-1]\right)^{2}
$$

where $u[i, j]$ denotes the displacement of the i-th (blue) node of the j-th beam. *

The flexion truss

Have we simply designed a degenerated material with a vanishing shear stiffness ?
No : the space of floppy modes is one-dimensional.
Consequence: fixing the shear in one part of the domain tends to fix it everywhere.
Using alternative beam structures and linking blue nodes only, makes the computation easier. We get the elastic energy

$$
E(u)=\sum_{j=1}^{M} \sum_{i=2}^{N-1} k\left(u_{2}[i-1, j]-2 u_{2}[i, j]+u_{2}[i+1, j]\right)^{2}+\sum_{j=1}^{M-1} \sum_{i=1}^{N} c\left(u_{2}[i, j]-u_{2}[i, j-1]\right)^{2}
$$

where $u[i, j]$ denotes the displacement of the i-th (blue) node of the j-th beam. *
This gives the continuum model (recalling that $u_{1}=0$)

$$
\tilde{E}(u)=\int_{\Omega} K\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)^{2}+c\left(\frac{\partial u_{2}}{\partial x_{2}}\right)^{2}
$$

The flexion truss

In order to understand the model, let us consider an example of equilibrium :

A surface force is exerted on the middle surface.

Solution for a classical elastic medium.

The flexion truss

Effect of the extra boundary condition.

For our truss the solution depends on the extra boundary condition:

- applying a vanishing density of torques $\mathcal{G}=0$ at $x_{1}=0$ gives no solution : the floppy mode is activated.
- applying a non-vanishing density of torques at $x_{1}=0$, by imposing the dual condition $\partial u_{2} / \partial x_{1}=0$, gives a solution.

No torque.

No rotation.

The flexion truss

The pantographic beam

Now we build a structure based on the following basic element,

We assume that the bars linking blue and red nodes have very high (infinite) stiffness corresponding to pure flexion (no extension) for the scissors.

The pantographic beam

Now we build a structure based on the following basic element, which has the same behaviour as scissors

We assume that the bars linking blue and red nodes have very high (infinite) stiffness corresponding to pure flexion (no extension) for the scissors.

The pantographic beam

Now we build a structure based on the following basic element, which has the same behaviour as scissors

We assume that the bars linking blue and red nodes have very high (infinite) stiffness corresponding to pure flexion (no extension) for the scissors.

The pantographic beam

Now we build a structure based on the following basic element, which has the same behaviour as scissors

We assume that the bars linking blue and red nodes have very high (infinite) stiffness corresponding to pure flexion (no extension) for the scissors.
Linking many such cells we get the pantographic structure:

The pantographic beam

Now we build a structure based on the following basic element, which has the same behaviour as scissors

We assume that the bars linking blue and red nodes have very high (infinite) stiffness corresponding to pure flexion (no extension) for the scissors.
Linking many such cells we get the pantographic structure:

which has an extensional flopping mode (in addition to the rotation).

The pantographic beam

Remarks:

Fixing the deformation of the first cell tends to fix the deformation of all cells.
When fixing the two first (blue) nodes the structure becomes isostatic.

Computing its elastic energy in terms of the displacement of the (blue) nodes is straightforward. We get

$$
E(u)=\sum_{i=2}^{N-1} k\left(u_{2}[i-1]-2 u_{2}[i]+u_{2}[i+1]\right)^{2}+k^{\prime}\left(u_{1}[i-1]-2 u_{1}[i]+u_{1}[i+1]\right)^{2}
$$

We now recognize in $u_{1}[i-1]-2 u_{1}[i]+u_{1}[i+1]$ the finite difference approximation of the second derivative of u_{1} with respect to x_{1}. With a suitable scaling for k and k^{\prime}, the continuous limit $(N \rightarrow \infty)$ model reads

$$
\tilde{E}(u)=\int_{0}^{\ell} K\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)^{2}+K^{\prime}\left(\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}\right)^{2}
$$

The pantographic beam

Remarks:

Fixing the deformation of the first cell tends to fix the deformation of all cells.
When fixing the two first (blue) nodes the structure becomes isostatic.

Computing its elastic energy in terms of the displacement of the (blue) nodes is straightforward. We get

$$
E(u)=\sum_{i=2}^{N-1} k\left(u_{2}[i-1]-2 u_{2}[i]+u_{2}[i+1]\right)^{2}+k^{\prime}\left(u_{1}[i-1]-2 u_{1}[i]+u_{1}[i+1]\right)^{2}
$$

We now recognize in $u_{1}[i-1]-2 u_{1}[i]+u_{1}[i+1]$ the finite difference approximation of the second derivative of u_{1} with respect to x_{1}.
With a suitable scaling for k and k^{\prime}, the continuous limit $(N \rightarrow \infty)$ model reads

$$
\tilde{E}(u)=\int_{0}^{\ell} K\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)^{2}+K^{\prime}\left(\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}\right)^{2}
$$

The equilibrium under the action of a single axial force F at end point $x_{1}=\ell$ minimizes $\inf _{u_{1}}\left\{\tilde{E}(u)-F u_{1}(\ell): ; u_{1}(0)=0 ; \frac{\partial u_{1}}{\partial x_{1}}(0)=0\right\}$ Everything can be transposed from the study of the flexion beam to the new beam by replacing the transverse displacement u_{2} by the axial one u_{1}. But the mechanical interpretation is completely different. The action $\mathcal{G}=-(\sigma \cdot n) \cdot n$ corresponds now to a "double force" (\longrightarrow or \rightarrow)

The pantographic truss

Consider many parallel pantographic beams,

The pantographic truss

Consider many parallel pantographic beams, link them by pantographic beams,

The pantographic truss

Consider many parallel pantographic beams, link them by pantographic beams, you get a truss with 4 floppy modes.

The pantographic truss

Consider many parallel pantographic beams, link them by pantographic beams, you get a truss with 4 floppy modes.

The pantographic truss

Consider many parallel pantographic beams, link them by pantographic beams, you get a truss with 4 floppy modes.

The pantographic truss

Consider many parallel pantographic beams, link them by pantographic beams, you get a truss with 4 floppy modes.

The pantographic truss

The elastic energy of the structure is the sum of the energies of all pantotographic beams:

$$
\begin{aligned}
E(u)= & \sum_{j=1}^{M} \sum_{i=2}^{N-1} k\left(u_{1}[i-1, j]-2 u_{1}[i, j]+u_{1}[i+1, j]\right)^{2}+k^{\prime}\left(u_{2}[i-1, j]-2 u_{2}[i, j]+u_{2}[i+1, j]\right)^{2} \\
& +\sum_{j=2}^{M-1} \sum_{i=1}^{N} k\left(u_{1}[i, j-1]-2 u_{1}[i, j]+u_{1}[i, j+1]\right)^{2}+k^{\prime}\left(u_{2}[i, j-1]-2 u_{2}[i, j]+u_{2}[i, j+1]\right)^{2}
\end{aligned}
$$

The pantographic truss

The elastic energy of the structure is the sum of the energies of all pantotographic beams:

$$
\begin{aligned}
E(u)= & \sum_{j=1}^{M} \sum_{i=2}^{N-1} k\left(u_{1}[i-1, j]-2 u_{1}[i, j]+u_{1}[i+1, j]\right)^{2}+k^{\prime}\left(u_{2}[i-1, j]-2 u_{2}[i, j]+u_{2}[i+1, j]\right)^{2} \\
& +\sum_{j=2}^{M-1} \sum_{i=1}^{N} k\left(u_{1}[i, j-1]-2 u_{1}[i, j]+u_{1}[i, j+1]\right)^{2}+k^{\prime}\left(u_{2}[i, j-1]-2 u_{2}[i, j]+u_{2}[i, j+1]\right)^{2}
\end{aligned}
$$

This gives the continuum model

$$
\tilde{E}(u)=\int_{\Omega} K\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)^{2}+K^{\prime}\left(\frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}\right)^{2}+K\left(\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}\right)^{2}+K^{\prime}\left(\frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}\right)^{2}
$$

The pantographic truss

The elastic energy of the structure is the sum of the energies of all pantotographic beams:

$$
\begin{aligned}
E(u)= & \sum_{j=1}^{M} \sum_{i=2}^{N-1} k\left(u_{1}[i-1, j]-2 u_{1}[i, j]+u_{1}[i+1, j]\right)^{2}+k^{\prime}\left(u_{2}[i-1, j]-2 u_{2}[i, j]+u_{2}[i+1, j]\right)^{2} \\
& +\sum_{j=2}^{M-1} \sum_{i=1}^{N} k\left(u_{1}[i, j-1]-2 u_{1}[i, j]+u_{1}[i, j+1]\right)^{2}+k^{\prime}\left(u_{2}[i, j-1]-2 u_{2}[i, j]+u_{2}[i, j+1]\right)^{2}
\end{aligned}
$$

This gives the continuum model

$$
\tilde{E}(u)=\int_{\Omega} K\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)^{2}+K^{\prime}\left(\frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}\right)^{2}+K\left(\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}\right)^{2}+K^{\prime}\left(\frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}\right)^{2}
$$

The floppy modes are of the form $u\left(x_{1}, x_{2}\right)=\left(a x_{1} x_{2}+b x_{1}+c x_{2}+d, e x_{1} x_{2}+f x_{1}+g x_{2}+h\right)$ which, with a Dirichlet condition $u=0$ on the boundary $x_{1}=0$, reduce to

$$
u\left(x_{1}, x_{2}\right)=\left(\left(a x_{2}+b\right) x_{1},\left(e x_{2}+f\right) x_{1}\right)
$$

The pantographic truss

The elastic energy of the structure is the sum of the energies of all pantotographic beams:

$$
\begin{aligned}
E(u)= & \sum_{j=1}^{M} \sum_{i=2}^{N-1} k\left(u_{1}[i-1, j]-2 u_{1}[i, j]+u_{1}[i+1, j]\right)^{2}+k^{\prime}\left(u_{2}[i-1, j]-2 u_{2}[i, j]+u_{2}[i+1, j]\right)^{2} \\
& +\sum_{j=2}^{M-1} \sum_{i=1}^{N} k\left(u_{1}[i, j-1]-2 u_{1}[i, j]+u_{1}[i, j+1]\right)^{2}+k^{\prime}\left(u_{2}[i, j-1]-2 u_{2}[i, j]+u_{2}[i, j+1]\right)^{2}
\end{aligned}
$$

This gives the continuum model

$$
\tilde{E}(u)=\int_{\Omega} K\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)^{2}+K^{\prime}\left(\frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}\right)^{2}+K\left(\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}\right)^{2}+K^{\prime}\left(\frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}\right)^{2}
$$

The floppy modes are of the form $u\left(x_{1}, x_{2}\right)=\left(a x_{1} x_{2}+b x_{1}+c x_{2}+d, e x_{1} x_{2}+f x_{1}+g x_{2}+h\right)$ which, with a Dirichlet condition $u=0$ on the boundary $x_{1}=0$, reduce to

$$
u\left(x_{1}, x_{2}\right)=\left(\left(a x_{2}+b\right) x_{1},\left(e x_{2}+f\right) x_{1}\right)
$$

One can still act on the material at the fixed surface $x_{1}=0$ by - applying a density \mathcal{G} of torques (or fixing the "rotation $\frac{\partial u_{2}}{\partial x_{1}}$)

- applying a density \mathcal{G} of "double-forces" (or fixing the "dilatation $\frac{\partial u_{1}}{\partial x_{1}}$)

The pantographic truss

An example of equilibrium

The 3rd gradient beam

We first suppress the flexion stiffness of the pantographic structure by considering:

Then we construct the Warren-type beam (where the upper line is the structure we just described and the other bars are non extensible)

The 3rd gradient beam

We first suppress the flexion stiffness of the pantographic structure by considering:

Then we construct the Warren-type beam (where the upper line is the structure we just described and the other bars are non extensible)

Deformations with constant curvature are the only floppy modes.

The 3rd gradient beam

We first suppress the flexion stiffness of the pantographic structure by considering:

Then we construct the Warren-type beam (where the upper line is the structure we just described and the other bars are non extensible)

Deformations with constant curvature are the only floppy modes.

The 3rd gradient beam

We first suppress the flexion stiffness of the pantographic structure by considering:

Then we construct the Warren-type beam (where the upper line is the structure we just described and the other bars are non extensible)

The 3rd gradient beam

We first suppress the flexion stiffness of the pantographic structure by considering:

Then we construct the Warren-type beam (where the upper line is the structure we just described and the other bars are non extensible)

The 3rd gradient beam

The beam is non extensible : $u_{1}=0$. Its energy (in terms of the transverse displacement of the blue nodes) reads

$$
E(u)=\sum_{i=2}^{N-2} k\left(-u_{2}[i-1]+3 u_{2}[i]-3 u_{2}[i+1]+u_{2}[i+2]\right)^{2}
$$

and, in the continuous limit,

$$
\tilde{E}(u)=\int_{\Omega} K\left(\frac{\partial^{3} u_{2}}{\partial x_{1}^{3}}\right)^{2}
$$

The 3rd gradient truss

Consider many parallel 3rd gradient beams,

The 3rd gradient truss

Consider many parallel 3rd gradient beams,
link them with bars, you get a truss with one floppy mode.

The 3rd gradient truss

Consider many parallel 3rd gradient beams,
link them with bars, you get a truss with one floppy mode.

The 3rd gradient truss

link them with bars, you get a truss with one floppy modde. Its energy reads

$$
E(u)=\sum_{j=1}^{M} \sum_{i=2}^{N-2} k\left(-u_{2}[i-1, j]+3 u_{2}[i, j]-3 u_{2}[i+1, j]+u_{2}[i+2, j]\right)^{2}+\sum_{j=1}^{M-1} \sum_{i=1}^{N} c\left(u_{2}[i, j]-u_{2}[i, j+1]\right)^{2}
$$

$$
\tilde{E}(u)=\int_{\Omega} K\left(\frac{\partial^{3} u_{2}}{\partial x_{1}^{3}}\right)^{2}+c\left(\frac{\partial u_{2}}{\partial x_{2}}\right)^{2}
$$

In the continuous limit, we get

$$
\tilde{E}(u)=\int_{\Omega} K\left(\frac{\partial^{3} u_{2}}{\partial x_{1}^{3}}\right)^{2}+c\left(\frac{\partial u_{2}}{\partial x_{2}}\right)^{2}
$$

Example of equilibrium :

Conclusion

- Boundary conditions for second and higher gradient material are not classical.

Conclusion

- Boundary conditions for second and higher gradient material are not classical.
- They describe real mechanical actions which, in the continuoum mechanics framework, cannot be interpretated as density of forces nor torques.

Conclusion

- Boundary conditions for second and higher gradient material are not classical.
- They describe real mechanical actions which, in the continuoum mechanics framework, cannot be interpretated as density of forces nor torques.
- Discrete systems which have the desired continuous limit give a miscroscopic interpretation for these actions.

Conclusion

- Boundary conditions for second and higher gradient material are not classical.
- They describe real mechanical actions which, in the continuoum mechanics framework, cannot be interpretated as density of forces nor torques.
- Discrete systems which have the desired continuous limit give a miscroscopic interpretation for these actions.
- In elasticity, discrete systems can lead to very rich behaviors.

Conclusion

- Boundary conditions for second and higher gradient material are not classical.
- They describe real mechanical actions which, in the continuoum mechanics framework, cannot be interpretated as density of forces nor torques.
- Discrete systems which have the desired continuous limit give a miscroscopic interpretation for these actions.
- In elasticity, discrete systems can lead to very rich behaviors.
- These behaviors can also be recovered through homogenization procedures. But obtaining them explicitely is a challenge.

